This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | |- B = ( Base ` G ) |
|
| Assertion | lt6abl | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | 1 | grpbn0 | |- ( G e. Grp -> B =/= (/) ) |
| 3 | 2 | adantr | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> B =/= (/) ) |
| 4 | 6re | |- 6 e. RR |
|
| 5 | rexr | |- ( 6 e. RR -> 6 e. RR* ) |
|
| 6 | pnfnlt | |- ( 6 e. RR* -> -. +oo < 6 ) |
|
| 7 | 4 5 6 | mp2b | |- -. +oo < 6 |
| 8 | 1 | fvexi | |- B e. _V |
| 9 | 8 | a1i | |- ( G e. Grp -> B e. _V ) |
| 10 | hashinf | |- ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
|
| 11 | 9 10 | sylan | |- ( ( G e. Grp /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
| 12 | 11 | breq1d | |- ( ( G e. Grp /\ -. B e. Fin ) -> ( ( # ` B ) < 6 <-> +oo < 6 ) ) |
| 13 | 12 | biimpd | |- ( ( G e. Grp /\ -. B e. Fin ) -> ( ( # ` B ) < 6 -> +oo < 6 ) ) |
| 14 | 13 | impancom | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( -. B e. Fin -> +oo < 6 ) ) |
| 15 | 7 14 | mt3i | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> B e. Fin ) |
| 16 | hashnncl | |- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
|
| 17 | 15 16 | syl | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 18 | 3 17 | mpbird | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. NN ) |
| 19 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 20 | 18 19 | eleqtrdi | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 21 | 6nn | |- 6 e. NN |
|
| 22 | 21 | nnzi | |- 6 e. ZZ |
| 23 | 22 | a1i | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> 6 e. ZZ ) |
| 24 | simpr | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) < 6 ) |
|
| 25 | elfzo2 | |- ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( ( # ` B ) e. ( ZZ>= ` 1 ) /\ 6 e. ZZ /\ ( # ` B ) < 6 ) ) |
|
| 26 | 20 23 24 25 | syl3anbrc | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> ( # ` B ) e. ( 1 ..^ 6 ) ) |
| 27 | df-6 | |- 6 = ( 5 + 1 ) |
|
| 28 | 27 | oveq2i | |- ( 1 ..^ 6 ) = ( 1 ..^ ( 5 + 1 ) ) |
| 29 | 28 | eleq2i | |- ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) ) |
| 30 | 5nn | |- 5 e. NN |
|
| 31 | 30 19 | eleqtri | |- 5 e. ( ZZ>= ` 1 ) |
| 32 | fzosplitsni | |- ( 5 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) ) |
|
| 33 | 31 32 | ax-mp | |- ( ( # ` B ) e. ( 1 ..^ ( 5 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) |
| 34 | 29 33 | bitri | |- ( ( # ` B ) e. ( 1 ..^ 6 ) <-> ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) ) |
| 35 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 36 | 35 | oveq2i | |- ( 1 ..^ 5 ) = ( 1 ..^ ( 4 + 1 ) ) |
| 37 | 36 | eleq2i | |- ( ( # ` B ) e. ( 1 ..^ 5 ) <-> ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) ) |
| 38 | 4nn | |- 4 e. NN |
|
| 39 | 38 19 | eleqtri | |- 4 e. ( ZZ>= ` 1 ) |
| 40 | fzosplitsni | |- ( 4 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) ) |
|
| 41 | 39 40 | ax-mp | |- ( ( # ` B ) e. ( 1 ..^ ( 4 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) |
| 42 | 37 41 | bitri | |- ( ( # ` B ) e. ( 1 ..^ 5 ) <-> ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) ) |
| 43 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 44 | 43 | oveq2i | |- ( 1 ..^ 4 ) = ( 1 ..^ ( 3 + 1 ) ) |
| 45 | 44 | eleq2i | |- ( ( # ` B ) e. ( 1 ..^ 4 ) <-> ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) ) |
| 46 | 3nn | |- 3 e. NN |
|
| 47 | 46 19 | eleqtri | |- 3 e. ( ZZ>= ` 1 ) |
| 48 | fzosplitsni | |- ( 3 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) ) |
|
| 49 | 47 48 | ax-mp | |- ( ( # ` B ) e. ( 1 ..^ ( 3 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) |
| 50 | 45 49 | bitri | |- ( ( # ` B ) e. ( 1 ..^ 4 ) <-> ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) ) |
| 51 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 52 | 51 | oveq2i | |- ( 1 ..^ 3 ) = ( 1 ..^ ( 2 + 1 ) ) |
| 53 | 52 | eleq2i | |- ( ( # ` B ) e. ( 1 ..^ 3 ) <-> ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) ) |
| 54 | 2eluzge1 | |- 2 e. ( ZZ>= ` 1 ) |
|
| 55 | fzosplitsni | |- ( 2 e. ( ZZ>= ` 1 ) -> ( ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) ) |
|
| 56 | 54 55 | ax-mp | |- ( ( # ` B ) e. ( 1 ..^ ( 2 + 1 ) ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) |
| 57 | 53 56 | bitri | |- ( ( # ` B ) e. ( 1 ..^ 3 ) <-> ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) ) |
| 58 | elsni | |- ( ( # ` B ) e. { 1 } -> ( # ` B ) = 1 ) |
|
| 59 | fzo12sn | |- ( 1 ..^ 2 ) = { 1 } |
|
| 60 | 58 59 | eleq2s | |- ( ( # ` B ) e. ( 1 ..^ 2 ) -> ( # ` B ) = 1 ) |
| 61 | 60 | adantl | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) = 1 ) |
| 62 | hash1 | |- ( # ` 1o ) = 1 |
|
| 63 | 61 62 | eqtr4di | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) = ( # ` 1o ) ) |
| 64 | 1nn0 | |- 1 e. NN0 |
|
| 65 | 61 64 | eqeltrdi | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( # ` B ) e. NN0 ) |
| 66 | hashclb | |- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
|
| 67 | 8 66 | ax-mp | |- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
| 68 | 65 67 | sylibr | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> B e. Fin ) |
| 69 | 1onn | |- 1o e. _om |
|
| 70 | nnfi | |- ( 1o e. _om -> 1o e. Fin ) |
|
| 71 | 69 70 | ax-mp | |- 1o e. Fin |
| 72 | hashen | |- ( ( B e. Fin /\ 1o e. Fin ) -> ( ( # ` B ) = ( # ` 1o ) <-> B ~~ 1o ) ) |
|
| 73 | 68 71 72 | sylancl | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> ( ( # ` B ) = ( # ` 1o ) <-> B ~~ 1o ) ) |
| 74 | 63 73 | mpbid | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> B ~~ 1o ) |
| 75 | 1 | 0cyg | |- ( ( G e. Grp /\ B ~~ 1o ) -> G e. CycGrp ) |
| 76 | cygabl | |- ( G e. CycGrp -> G e. Abel ) |
|
| 77 | 75 76 | syl | |- ( ( G e. Grp /\ B ~~ 1o ) -> G e. Abel ) |
| 78 | 74 77 | syldan | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 2 ) ) -> G e. Abel ) |
| 79 | 78 | ex | |- ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 2 ) -> G e. Abel ) ) |
| 80 | id | |- ( ( # ` B ) = 2 -> ( # ` B ) = 2 ) |
|
| 81 | 2prm | |- 2 e. Prime |
|
| 82 | 80 81 | eqeltrdi | |- ( ( # ` B ) = 2 -> ( # ` B ) e. Prime ) |
| 83 | 1 | prmcyg | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) |
| 84 | 83 76 | syl | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. Abel ) |
| 85 | 84 | ex | |- ( G e. Grp -> ( ( # ` B ) e. Prime -> G e. Abel ) ) |
| 86 | 82 85 | syl5 | |- ( G e. Grp -> ( ( # ` B ) = 2 -> G e. Abel ) ) |
| 87 | 79 86 | jaod | |- ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 2 ) \/ ( # ` B ) = 2 ) -> G e. Abel ) ) |
| 88 | 57 87 | biimtrid | |- ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 3 ) -> G e. Abel ) ) |
| 89 | id | |- ( ( # ` B ) = 3 -> ( # ` B ) = 3 ) |
|
| 90 | 3prm | |- 3 e. Prime |
|
| 91 | 89 90 | eqeltrdi | |- ( ( # ` B ) = 3 -> ( # ` B ) e. Prime ) |
| 92 | 91 85 | syl5 | |- ( G e. Grp -> ( ( # ` B ) = 3 -> G e. Abel ) ) |
| 93 | 88 92 | jaod | |- ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 3 ) \/ ( # ` B ) = 3 ) -> G e. Abel ) ) |
| 94 | 50 93 | biimtrid | |- ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 4 ) -> G e. Abel ) ) |
| 95 | simpl | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> G e. Grp ) |
|
| 96 | 2z | |- 2 e. ZZ |
|
| 97 | eqid | |- ( gEx ` G ) = ( gEx ` G ) |
|
| 98 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 99 | 1 97 98 | gexdvds2 | |- ( ( G e. Grp /\ 2 e. ZZ ) -> ( ( gEx ` G ) || 2 <-> A. x e. B ( ( od ` G ) ` x ) || 2 ) ) |
| 100 | 95 96 99 | sylancl | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( ( gEx ` G ) || 2 <-> A. x e. B ( ( od ` G ) ` x ) || 2 ) ) |
| 101 | 1 97 | gex2abl | |- ( ( G e. Grp /\ ( gEx ` G ) || 2 ) -> G e. Abel ) |
| 102 | 101 | ex | |- ( G e. Grp -> ( ( gEx ` G ) || 2 -> G e. Abel ) ) |
| 103 | 102 | adantr | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( ( gEx ` G ) || 2 -> G e. Abel ) ) |
| 104 | 100 103 | sylbird | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( A. x e. B ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) |
| 105 | rexnal | |- ( E. x e. B -. ( ( od ` G ) ` x ) || 2 <-> -. A. x e. B ( ( od ` G ) ` x ) || 2 ) |
|
| 106 | 95 | adantr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. Grp ) |
| 107 | simprl | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> x e. B ) |
|
| 108 | 1 98 | odcl | |- ( x e. B -> ( ( od ` G ) ` x ) e. NN0 ) |
| 109 | 108 | ad2antrl | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) e. NN0 ) |
| 110 | 4nn0 | |- 4 e. NN0 |
|
| 111 | 110 | a1i | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 e. NN0 ) |
| 112 | simpr | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( # ` B ) = 4 ) |
|
| 113 | 112 110 | eqeltrdi | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( # ` B ) e. NN0 ) |
| 114 | 113 67 | sylibr | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> B e. Fin ) |
| 115 | 114 | adantr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> B e. Fin ) |
| 116 | 1 98 | oddvds2 | |- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
| 117 | 106 115 107 116 | syl3anc | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
| 118 | 112 | adantr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( # ` B ) = 4 ) |
| 119 | 117 118 | breqtrd | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) || 4 ) |
| 120 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 121 | 2nn0 | |- 2 e. NN0 |
|
| 122 | 96 | a1i | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 2 e. ZZ ) |
| 123 | 1 98 | odcl2 | |- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) e. NN ) |
| 124 | 106 115 107 123 | syl3anc | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) e. NN ) |
| 125 | pccl | |- ( ( 2 e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) |
|
| 126 | 81 124 125 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) |
| 127 | 126 | nn0zd | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ ) |
| 128 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 129 | simprr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> -. ( ( od ` G ) ` x ) || 2 ) |
|
| 130 | dvdsexp | |- ( ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 /\ 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) |
|
| 131 | 130 | 3expia | |- ( ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) ) |
| 132 | 96 126 131 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) ) ) |
| 133 | 1z | |- 1 e. ZZ |
|
| 134 | eluz | |- ( ( ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ /\ 1 e. ZZ ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) <-> ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) |
|
| 135 | 127 133 134 | sylancl | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 e. ( ZZ>= ` ( 2 pCnt ( ( od ` G ) ` x ) ) ) <-> ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) |
| 136 | oveq2 | |- ( n = 2 -> ( 2 ^ n ) = ( 2 ^ 2 ) ) |
|
| 137 | 136 120 | eqtrdi | |- ( n = 2 -> ( 2 ^ n ) = 4 ) |
| 138 | 137 | breq2d | |- ( n = 2 -> ( ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) || 4 ) ) |
| 139 | 138 | rspcev | |- ( ( 2 e. NN0 /\ ( ( od ` G ) ` x ) || 4 ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) ) |
| 140 | 121 119 139 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) ) |
| 141 | pcprmpw2 | |- ( ( 2 e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) ) |
|
| 142 | 81 124 141 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( 2 ^ n ) <-> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) ) |
| 143 | 140 142 | mpbid | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
| 144 | 143 | eqcomd | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) = ( ( od ` G ) ` x ) ) |
| 145 | 2cn | |- 2 e. CC |
|
| 146 | exp1 | |- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
|
| 147 | 145 146 | ax-mp | |- ( 2 ^ 1 ) = 2 |
| 148 | 147 | a1i | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ 1 ) = 2 ) |
| 149 | 144 148 | breq12d | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) || ( 2 ^ 1 ) <-> ( ( od ` G ) ` x ) || 2 ) ) |
| 150 | 132 135 149 | 3imtr3d | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 -> ( ( od ` G ) ` x ) || 2 ) ) |
| 151 | 129 150 | mtod | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) |
| 152 | 1re | |- 1 e. RR |
|
| 153 | 126 | nn0red | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. RR ) |
| 154 | ltnle | |- ( ( 1 e. RR /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. RR ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) |
|
| 155 | 152 153 154 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> -. ( 2 pCnt ( ( od ` G ) ` x ) ) <_ 1 ) ) |
| 156 | 151 155 | mpbird | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) ) |
| 157 | nn0ltp1le | |- ( ( 1 e. NN0 /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. NN0 ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
|
| 158 | 64 126 157 | sylancr | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 < ( 2 pCnt ( ( od ` G ) ` x ) ) <-> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
| 159 | 156 158 | mpbid | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 1 + 1 ) <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) |
| 160 | 128 159 | eqbrtrid | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 2 <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) |
| 161 | eluz2 | |- ( ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. ZZ /\ 2 <_ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
|
| 162 | 122 127 160 161 | syl3anbrc | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) ) |
| 163 | dvdsexp | |- ( ( 2 e. ZZ /\ 2 e. NN0 /\ ( 2 pCnt ( ( od ` G ) ` x ) ) e. ( ZZ>= ` 2 ) ) -> ( 2 ^ 2 ) || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
|
| 164 | 96 121 162 163 | mp3an12i | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( 2 ^ 2 ) || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
| 165 | 120 164 | eqbrtrrid | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 || ( 2 ^ ( 2 pCnt ( ( od ` G ) ` x ) ) ) ) |
| 166 | 165 143 | breqtrrd | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> 4 || ( ( od ` G ) ` x ) ) |
| 167 | dvdseq | |- ( ( ( ( ( od ` G ) ` x ) e. NN0 /\ 4 e. NN0 ) /\ ( ( ( od ` G ) ` x ) || 4 /\ 4 || ( ( od ` G ) ` x ) ) ) -> ( ( od ` G ) ` x ) = 4 ) |
|
| 168 | 109 111 119 166 167 | syl22anc | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = 4 ) |
| 169 | 168 118 | eqtr4d | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> ( ( od ` G ) ` x ) = ( # ` B ) ) |
| 170 | 1 98 106 107 169 | iscygodd | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. CycGrp ) |
| 171 | 170 76 | syl | |- ( ( ( G e. Grp /\ ( # ` B ) = 4 ) /\ ( x e. B /\ -. ( ( od ` G ) ` x ) || 2 ) ) -> G e. Abel ) |
| 172 | 171 | rexlimdvaa | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( E. x e. B -. ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) |
| 173 | 105 172 | biimtrrid | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> ( -. A. x e. B ( ( od ` G ) ` x ) || 2 -> G e. Abel ) ) |
| 174 | 104 173 | pm2.61d | |- ( ( G e. Grp /\ ( # ` B ) = 4 ) -> G e. Abel ) |
| 175 | 174 | ex | |- ( G e. Grp -> ( ( # ` B ) = 4 -> G e. Abel ) ) |
| 176 | 94 175 | jaod | |- ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 4 ) \/ ( # ` B ) = 4 ) -> G e. Abel ) ) |
| 177 | 42 176 | biimtrid | |- ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 5 ) -> G e. Abel ) ) |
| 178 | id | |- ( ( # ` B ) = 5 -> ( # ` B ) = 5 ) |
|
| 179 | 5prm | |- 5 e. Prime |
|
| 180 | 178 179 | eqeltrdi | |- ( ( # ` B ) = 5 -> ( # ` B ) e. Prime ) |
| 181 | 180 85 | syl5 | |- ( G e. Grp -> ( ( # ` B ) = 5 -> G e. Abel ) ) |
| 182 | 177 181 | jaod | |- ( G e. Grp -> ( ( ( # ` B ) e. ( 1 ..^ 5 ) \/ ( # ` B ) = 5 ) -> G e. Abel ) ) |
| 183 | 34 182 | biimtrid | |- ( G e. Grp -> ( ( # ` B ) e. ( 1 ..^ 6 ) -> G e. Abel ) ) |
| 184 | 183 | imp | |- ( ( G e. Grp /\ ( # ` B ) e. ( 1 ..^ 6 ) ) -> G e. Abel ) |
| 185 | 26 184 | syldan | |- ( ( G e. Grp /\ ( # ` B ) < 6 ) -> G e. Abel ) |