This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cygabl | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 3 | 1 2 | iscyg3 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 4 | eqidd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 5 | eqidd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) | |
| 6 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Grp ) | |
| 7 | oveq1 | ⊢ ( 𝑛 = 𝑖 → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) | |
| 8 | 7 | eqeq2d | ⊢ ( 𝑛 = 𝑖 → ( 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 10 | 9 | biimpi | ⊢ ( ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑖 ∈ ℤ 𝑦 = ( 𝑖 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 14 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → 𝐺 ∈ Grp ) | |
| 15 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 16 | 15 | anim1ci | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 17 | df-3an | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ↔ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 19 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 20 | 1 2 19 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 21 | 14 18 20 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 22 | 21 | ralrimivva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑚 ∈ ℤ ∀ 𝑛 ∈ ℤ ( ( 𝑚 + 𝑛 ) ( .g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 25 | simp2 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) | |
| 26 | simp3 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) | |
| 27 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 28 | 27 | a1i | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ℤ ⊆ ℂ ) |
| 29 | 13 24 25 26 28 | cyccom | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 30 | 4 5 6 29 | isabld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
| 31 | 30 | r19.29an | ⊢ ( ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) → 𝐺 ∈ Abel ) |
| 32 | 3 31 | sylbi | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) |