This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitsni | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplitsn | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 3 | elun | ⊢ ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ) | |
| 4 | elsn2g | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ { 𝐵 } ↔ 𝐶 = 𝐵 ) ) | |
| 5 | 4 | orbi2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
| 6 | 3 5 | bitrid | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
| 7 | 2 6 | bitrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |