This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 1onnALT . Lemma 2.2 of Schloeder p. 4. (Contributed by NM, 29-Oct-1995) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | ⊢ 1o ∈ On | |
| 2 | 1ellim | ⊢ ( Lim 𝑥 → 1o ∈ 𝑥 ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑥 ( Lim 𝑥 → 1o ∈ 𝑥 ) |
| 4 | elom | ⊢ ( 1o ∈ ω ↔ ( 1o ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 1o ∈ 𝑥 ) ) ) | |
| 5 | 1 3 4 | mpbir2an | ⊢ 1o ∈ ω |