This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3prm | ⊢ 3 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z | ⊢ 3 ∈ ℤ | |
| 2 | 1lt3 | ⊢ 1 < 3 | |
| 3 | eluz2b1 | ⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 3 ∈ ℤ ∧ 1 < 3 ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
| 5 | elfz1eq | ⊢ ( 𝑧 ∈ ( 2 ... 2 ) → 𝑧 = 2 ) | |
| 6 | n2dvds3 | ⊢ ¬ 2 ∥ 3 | |
| 7 | breq1 | ⊢ ( 𝑧 = 2 → ( 𝑧 ∥ 3 ↔ 2 ∥ 3 ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( 𝑧 = 2 → ¬ 𝑧 ∥ 3 ) |
| 9 | 5 8 | syl | ⊢ ( 𝑧 ∈ ( 2 ... 2 ) → ¬ 𝑧 ∥ 3 ) |
| 10 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 11 | 10 | oveq2i | ⊢ ( 2 ... ( 3 − 1 ) ) = ( 2 ... 2 ) |
| 12 | 9 11 | eleq2s | ⊢ ( 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) → ¬ 𝑧 ∥ 3 ) |
| 13 | 12 | rgen | ⊢ ∀ 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3 |
| 14 | isprm3 | ⊢ ( 3 ∈ ℙ ↔ ( 3 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 3 − 1 ) ) ¬ 𝑧 ∥ 3 ) ) | |
| 15 | 4 13 14 | mpbir2an | ⊢ 3 ∈ ℙ |