This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl2.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | oddvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl2.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 5 | 1 2 3 4 | dfod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) ) |
| 7 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ Fin ) | |
| 8 | 1 3 4 | cycsubgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 | 1 | subgss | ⊢ ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) |
| 13 | 7 12 | ssfid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) |
| 14 | 13 | iftrued | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → if ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin , ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) , 0 ) = ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 15 | 6 14 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 16 | 1 | lagsubg | ⊢ ( ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 17 | 10 7 16 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( ♯ ‘ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 18 | 15 17 | eqbrtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑋 ) ) |