This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscygodd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscygodd.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| iscygodd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| iscygodd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| iscygodd.5 | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) | ||
| Assertion | iscygodd | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscygodd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscygodd.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | iscygodd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | iscygodd.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | iscygodd.5 | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) | |
| 6 | 1 2 | odcl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑂 ‘ 𝑋 ) ∈ ℕ0 ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ℕ0 ) |
| 8 | 5 7 | eqeltrrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 9 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 10 | hashclb | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 12 | 8 11 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 13 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 14 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } | |
| 15 | 1 13 14 2 | cyggenod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| 16 | 3 12 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
| 17 | 4 5 16 | mpbir2and | ⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
| 18 | 17 | ne0d | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
| 19 | 1 13 14 | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
| 20 | 3 18 19 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |