This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnncl | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) ≠ 0 ) | |
| 2 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 3 | elnn0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 5 | 4 | ord | ⊢ ( 𝐴 ∈ Fin → ( ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 6 | 5 | necon1ad | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ≠ 0 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 7 | 1 6 | impbid2 | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 8 | hasheq0 | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 9 | 8 | necon3bid | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 10 | 7 9 | bitrd | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |