This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | gex2abl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | 1 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝑋 = ( Base ‘ 𝐺 ) ) |
| 4 | eqidd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Grp ) | |
| 6 | simp1l | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) | |
| 7 | simp2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 8 | simp3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | 1 9 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 11 | 6 7 8 8 10 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 12 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 13 | 1 12 9 | mulg2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 14 | 8 13 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 15 | simp1r | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐸 ∥ 2 ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 17 | 1 2 12 16 | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 6 8 15 17 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 14 18 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 21 | 1 9 16 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 22 | 6 7 21 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 23 | 11 20 22 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 25 | 1 12 9 | mulg2 | ⊢ ( 𝑥 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 26 | 7 25 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 27 | 1 2 12 16 | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 6 7 15 27 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 24 26 28 | 3eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 30 | 1 9 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 31 | 6 7 8 30 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 32 | 1 2 12 16 | gexdvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 33 | 6 31 15 32 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 34 | 1 12 9 | mulg2 | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 35 | 31 34 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 36 | 29 33 35 | 3eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 37 | 1 9 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 38 | 6 31 8 7 37 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 39 | 36 38 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 40 | 1 9 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 41 | 6 8 7 40 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 42 | 1 9 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 43 | 6 31 41 31 42 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 44 | 39 43 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 45 | 3 4 5 44 | isabld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Abel ) |