This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004) (Revised by Mario Carneiro, 2-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | expnnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( 𝐴 ↑ 1 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) |
| 7 | 3 6 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) ) |
| 8 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) | |
| 9 | 1 8 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
| 10 | 7 9 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |