This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show M e. ZZ . (Contributed by NM, 5-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 2 | simp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 3 | eluz1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) | |
| 4 | ibar | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) ) | |
| 5 | 3 4 | bitrd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 8 | 1 2 7 | pm5.21nii | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |