This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ghmcyg.1 | ⊢ 𝐶 = ( Base ‘ 𝐻 ) | ||
| Assertion | ghmcyg | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ghmcyg.1 | ⊢ 𝐶 = ( Base ‘ 𝐻 ) | |
| 3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 4 | 1 3 | iscyg | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
| 6 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 7 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐻 ∈ Grp ) |
| 9 | fof | ⊢ ( 𝐹 : 𝐵 –onto→ 𝐶 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 11 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 12 | 10 11 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : 𝐵 –onto→ 𝐶 ) | |
| 14 | foeq2 | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
| 15 | 14 | ad2antll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ) |
| 17 | foelrn | ⊢ ( ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ) | |
| 18 | 16 17 | sylan | ⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ) |
| 19 | ovex | ⊢ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V | |
| 20 | 19 | rgenw | ⊢ ∀ 𝑚 ∈ ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V |
| 21 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) | |
| 22 | 21 | cbvmptv | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ∈ ℤ ↦ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) |
| 23 | fveq2 | ⊢ ( 𝑧 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) | |
| 24 | 23 | eqeq2d | ⊢ ( 𝑧 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 25 | 22 24 | rexrnmptw | ⊢ ( ∀ 𝑚 ∈ ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 26 | 20 25 | ax-mp | ⊢ ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 27 | 18 26 | sylib | ⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
| 28 | simp-4l | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 29 | simpr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) | |
| 30 | 11 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑥 ∈ 𝐵 ) |
| 31 | 1 3 6 | ghmmulg | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | 28 29 30 31 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 | 32 | eqeq2d | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ↔ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 34 | 33 | rexbidva | ⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | 27 34 | mpbid | ⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 2 6 8 12 35 | iscygd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐻 ∈ CycGrp ) |
| 37 | 36 | rexlimdvaa | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐻 ∈ CycGrp ) ) |
| 38 | 5 37 | syl5 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |