This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the # function on an infinite set. (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | eldif | ⊢ ( 𝐴 ∈ ( V ∖ Fin ) ↔ ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) ) | |
| 3 | df-hash | ⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) | |
| 4 | 3 | reseq1i | ⊢ ( ♯ ↾ ( V ∖ Fin ) ) = ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ↾ ( V ∖ Fin ) ) |
| 5 | resundir | ⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ↾ ( V ∖ Fin ) ) = ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) | |
| 6 | disjdif | ⊢ ( Fin ∩ ( V ∖ Fin ) ) = ∅ | |
| 7 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 8 | eqid | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) | |
| 9 | 7 8 | hashkf | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 |
| 10 | ffn | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) Fn Fin ) | |
| 11 | fnresdisj | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) Fn Fin → ( ( Fin ∩ ( V ∖ Fin ) ) = ∅ ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ ) ) | |
| 12 | 9 10 11 | mp2b | ⊢ ( ( Fin ∩ ( V ∖ Fin ) ) = ∅ ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ ) |
| 13 | 6 12 | mpbi | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ |
| 14 | pnfex | ⊢ +∞ ∈ V | |
| 15 | 14 | fconst | ⊢ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } |
| 16 | ffn | ⊢ ( ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } → ( ( V ∖ Fin ) × { +∞ } ) Fn ( V ∖ Fin ) ) | |
| 17 | fnresdm | ⊢ ( ( ( V ∖ Fin ) × { +∞ } ) Fn ( V ∖ Fin ) → ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) ) | |
| 18 | 15 16 17 | mp2b | ⊢ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 19 | 13 18 | uneq12i | ⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) = ( ∅ ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 20 | uncom | ⊢ ( ∅ ∪ ( ( V ∖ Fin ) × { +∞ } ) ) = ( ( ( V ∖ Fin ) × { +∞ } ) ∪ ∅ ) | |
| 21 | un0 | ⊢ ( ( ( V ∖ Fin ) × { +∞ } ) ∪ ∅ ) = ( ( V ∖ Fin ) × { +∞ } ) | |
| 22 | 19 20 21 | 3eqtri | ⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 23 | 4 5 22 | 3eqtri | ⊢ ( ♯ ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 24 | 23 | fveq1i | ⊢ ( ( ♯ ↾ ( V ∖ Fin ) ) ‘ 𝐴 ) = ( ( ( V ∖ Fin ) × { +∞ } ) ‘ 𝐴 ) |
| 25 | fvres | ⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ( ♯ ↾ ( V ∖ Fin ) ) ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) ) | |
| 26 | 14 | fvconst2 | ⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ( ( V ∖ Fin ) × { +∞ } ) ‘ 𝐴 ) = +∞ ) |
| 27 | 24 25 26 | 3eqtr3a | ⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 28 | 2 27 | sylbir | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 29 | 1 28 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |