This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure of the # function. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashclb | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 2 | nn0re | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 4 | 3 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 5 | hashinf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) | |
| 6 | 5 | eleq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 7 | 4 6 | mtbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ¬ ( ♯ ‘ 𝐴 ) ∈ ℝ ) ) |
| 9 | 8 | con4d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℝ → 𝐴 ∈ Fin ) ) |
| 10 | 2 9 | syl5 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐴 ∈ Fin ) ) |
| 11 | 1 10 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |