This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl2.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl2.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 7 | 6 | ord | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 8 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 10 | 1 2 8 9 | odinf | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) |
| 11 | 1 2 8 9 | odf1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 ) ) |
| 12 | 11 | biimp3a | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 ) |
| 13 | f1f | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1→ 𝑋 → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 ) | |
| 14 | frn | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ ⟶ 𝑋 → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) | |
| 15 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) | |
| 16 | 15 | expcom | ⊢ ( ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ⊆ 𝑋 → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) ) |
| 17 | 12 13 14 16 | 4syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑋 ∈ Fin → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ Fin ) ) |
| 18 | 10 17 | mtod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ 𝑋 ∈ Fin ) |
| 19 | 18 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ 𝑋 ∈ Fin ) ) |
| 20 | 7 19 | syld | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ¬ 𝑋 ∈ Fin ) ) |
| 21 | 20 | con4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 ∈ Fin → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑋 ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 23 | 22 | 3com23 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |