This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 16-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2prm | ⊢ 2 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | 1lt2 | ⊢ 1 < 2 | |
| 3 | eluz2b1 | ⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 1 < 2 ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 5 | ral0 | ⊢ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 | |
| 6 | fzssuz | ⊢ ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) | |
| 7 | dfss2 | ⊢ ( ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) ) | |
| 8 | 6 7 | mpbi | ⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) |
| 9 | uzdisj | ⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ∅ | |
| 10 | 8 9 | eqtr3i | ⊢ ( 2 ... ( 2 − 1 ) ) = ∅ |
| 11 | 10 | raleqi | ⊢ ( ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ↔ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 ) |
| 12 | 5 11 | mpbir | ⊢ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 |
| 13 | isprm3 | ⊢ ( 2 ∈ ℙ ↔ ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ) ) | |
| 14 | 4 12 13 | mpbir2an | ⊢ 2 ∈ ℙ |