This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℤ ) | |
| 2 | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 4 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ) |
| 6 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) |
| 8 | dvdsmul2 | ⊢ ( ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∥ ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∥ ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 10 | 1 | zcnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℕ0 ) | |
| 12 | 10 11 3 | expaddd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 13 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 15 | 11 | nn0cnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℂ ) |
| 16 | 14 15 | npcand | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 18 | 12 17 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 19 | 9 18 | breqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |