This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | 0cyg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ Grp ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | en1eqsn | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { ( 0g ‘ 𝐺 ) } ) | |
| 9 | 5 8 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐵 = { ( 0g ‘ 𝐺 ) } ) |
| 10 | 9 | eleq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
| 11 | 10 | biimpa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
| 12 | velsn | ⊢ ( 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
| 14 | 1 4 2 | mulg0 | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐵 → ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 15 | 6 14 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 18 | oveq1 | ⊢ ( 𝑛 = 0 → ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | |
| 19 | 18 | rspceeqv | ⊢ ( ( 0 ∈ ℤ ∧ 𝑥 = ( 0 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 20 | 7 17 19 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( 𝑛 ( .g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 21 | 1 2 3 6 20 | iscygd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ CycGrp ) |