This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a group element is always a nonnegative integer. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } | |
| 6 | 1 3 4 2 5 | odlem1 | ⊢ ( 𝐴 ∈ 𝑋 → ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ ) ∨ ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } ) ) |
| 7 | simpl | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ ) → ( 𝑂 ‘ 𝐴 ) = 0 ) | |
| 8 | elrabi | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 9 | 7 8 | orim12i | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } = ∅ ) ∨ ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) } ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ∨ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) = 0 ∨ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ) |
| 11 | 10 | orcomd | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 12 | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |