This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnfnlt | ⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 2 | 1 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 3 | 2 | intnanr | ⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) |
| 4 | 3 | intnanr | ⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) |
| 5 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 6 | 5 | neii | ⊢ ¬ +∞ = -∞ |
| 7 | 6 | intnanr | ⊢ ¬ ( +∞ = -∞ ∧ 𝐴 = +∞ ) |
| 8 | 4 7 | pm3.2ni | ⊢ ¬ ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) |
| 9 | 2 | intnanr | ⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) |
| 10 | 6 | intnanr | ⊢ ¬ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) |
| 11 | 9 10 | pm3.2ni | ⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) |
| 12 | 8 11 | pm3.2ni | ⊢ ¬ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | ltxr | ⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) | |
| 15 | 13 14 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
| 16 | 12 15 | mtbiri | ⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) |