This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfcdm | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 3 | 2 | ralrimivva | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 5 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐴 ⊆ ℂ ) | |
| 6 | simpl | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐶 ⊆ ℂ ) | |
| 7 | elcncf2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) | |
| 8 | 5 6 7 | syl2an2 | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 9 | 4 8 | mpbiran2d | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) ) |