This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. -cn-> analogue of cnmpt12f . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt2f.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| cncfmpt2f.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) | ||
| cncfmpt2f.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| cncfmpt2f.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | cncfmpt2f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt2f.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cncfmpt2f.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) | |
| 3 | cncfmpt2f.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 4 | cncfmpt2f.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 5 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 6 | cncfrss | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) → 𝑋 ⊆ ℂ ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 8 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | ssid | ⊢ ℂ ⊆ ℂ | |
| 11 | eqid | ⊢ ( 𝐽 ↾t 𝑋 ) = ( 𝐽 ↾t 𝑋 ) | |
| 12 | 5 | toponrestid | ⊢ 𝐽 = ( 𝐽 ↾t ℂ ) |
| 13 | 1 11 12 | cncfcn | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ ℂ ) = ( ( 𝐽 ↾t 𝑋 ) Cn 𝐽 ) ) |
| 14 | 7 10 13 | sylancl | ⊢ ( 𝜑 → ( 𝑋 –cn→ ℂ ) = ( ( 𝐽 ↾t 𝑋 ) Cn 𝐽 ) ) |
| 15 | 3 14 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝑋 ) Cn 𝐽 ) ) |
| 16 | 4 14 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝑋 ) Cn 𝐽 ) ) |
| 17 | 9 15 16 2 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( ( 𝐽 ↾t 𝑋 ) Cn 𝐽 ) ) |
| 18 | 17 14 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |