This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| Assertion | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | dvcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | dvcl.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 4 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 5 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 6 | 1 2 3 4 5 | dvbssntr | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ) |
| 7 | 5 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 10 | 1 8 9 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 11 | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) | |
| 12 | 7 10 11 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 13 | 5 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 14 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 15 | 13 1 14 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 | toponuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 18 | 3 17 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 19 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 20 | 19 | ntrss2 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ 𝐴 ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 21 | 12 18 20 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 22 | 6 21 | sstrd | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝐴 ) |