This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptntr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| dvmptntr.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvmptntr.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | ||
| dvmptntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvmptntr.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) | ||
| Assertion | dvmptntr | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptntr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | dvmptntr.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvmptntr.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 4 | dvmptntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 5 | dvmptntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | dvmptntr.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) | |
| 7 | 5 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 8 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 9 | 7 1 8 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 10 | 4 9 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 11 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 13 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) | |
| 14 | 10 13 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
| 15 | 2 14 | sseqtrd | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝐽 ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | ntridm | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 18 | 12 15 17 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 19 | 6 | fveq2d | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
| 20 | 18 19 | eqtr3d | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
| 21 | 20 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 22 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 23 | 5 4 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 24 | 1 22 2 2 23 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 25 | 16 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 26 | 12 15 25 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 27 | 6 26 | eqsstrrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 28 | 27 2 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
| 29 | 5 4 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 30 | 1 22 2 28 29 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 31 | 21 24 30 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) ) |
| 32 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 33 | resmpt | ⊢ ( 𝑋 ⊆ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 34 | 32 33 | mp1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
| 36 | 31 35 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
| 37 | 27 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| 39 | 36 38 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |