This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a derivative. Note that our definition of derivative df-dv would still make sense if we demanded that x be an element of the domain instead of an interior point of the domain, but then it is possible for a non-differentiable function to have two different derivatives at a single point x when restricted to different subsets containing x ; a classic example is the absolute value function restricted to [ 0 , +oo ) and ( -oo , 0 ] . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | ||
| Assertion | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| 3 | reldv | ⊢ Rel ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) | |
| 4 | relres | ⊢ Rel ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) | |
| 5 | simpll | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → 𝑆 ⊆ ℂ ) | |
| 6 | simplr | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 7 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 8 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
| 10 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) | |
| 11 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) | |
| 12 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 13 | 6 11 12 | 3syl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 14 | 13 | reseq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) |
| 15 | 10 14 | eqtr3id | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 16 | 15 | feq1d | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ↔ ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) ) |
| 17 | 9 16 | mpbid | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
| 18 | simprl | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 19 | 7 18 | sstrid | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑆 ) |
| 20 | 5 17 19 | dvcl | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 21 | 20 | ex | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 22 | 5 6 18 | dvcl | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 23 | 22 | ex | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 → 𝑦 ∈ ℂ ) ) |
| 24 | 23 | adantld | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) ) |
| 25 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 26 | 5 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → 𝑆 ⊆ ℂ ) |
| 27 | 6 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 28 | 18 | adantr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → 𝐴 ⊆ 𝑆 ) |
| 29 | simplrr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → 𝐵 ⊆ 𝑆 ) | |
| 30 | simpr | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 31 | 1 2 25 26 27 28 29 30 | dvreslem | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) |
| 32 | 31 | ex | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑦 ∈ ℂ → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) ) |
| 33 | 21 24 32 | pm5.21ndd | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) |
| 34 | vex | ⊢ 𝑦 ∈ V | |
| 35 | 34 | brresi | ⊢ ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
| 36 | 33 35 | bitr4di | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ 𝑥 ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) 𝑦 ) ) |
| 37 | 3 4 36 | eqbrrdiv | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |