This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function is a continuous function on CC . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfmptid | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfss | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) ⊆ ( 𝑆 –cn→ 𝑇 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 | sstr | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ ) | |
| 5 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 7 | 6 | cnmptid | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 8 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 9 | 2 8 8 | cncfcn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 10 | 4 4 9 | syl2anc | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑆 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 11 | 7 10 | eleqtrrd | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( 𝑆 –cn→ 𝑆 ) ) |
| 12 | 1 11 | sseldd | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |