This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptadd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | ||
| dvmptadd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) | ||
| dvmptadd.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | ||
| Assertion | dvmptadd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptadd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | |
| 6 | dvmptadd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) | |
| 7 | dvmptadd.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | |
| 8 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 9 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) : 𝑋 ⟶ ℂ ) |
| 10 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 11 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 12 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 14 | 10 13 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 15 | 7 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 16 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 ) |
| 17 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = 𝑋 ) |
| 19 | 15 18 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = 𝑋 ) |
| 20 | 1 8 9 14 19 | dvaddf | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) ) |
| 21 | ovex | ⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V | |
| 22 | 21 | dmex | ⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ∈ V |
| 23 | 19 22 | eqeltrrdi | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 24 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 25 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) | |
| 26 | 23 2 5 24 25 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∘f + ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) ) |
| 28 | 23 3 6 4 7 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f + ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |
| 29 | 20 27 28 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + 𝐷 ) ) ) |