This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfco.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| cncfco.5 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) ) | ||
| Assertion | cncfco | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfco.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 2 | cncfco.5 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) ) | |
| 3 | cncff | ⊢ ( 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) → 𝐺 : 𝐵 ⟶ 𝐶 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐶 ) |
| 5 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 | fco | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐶 ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐶 ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → 𝑥 ∈ 𝐴 ) | |
| 12 | 10 11 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → 𝑦 ∈ ℝ+ ) | |
| 14 | cncfi | ⊢ ( ( 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑢 ∈ ℝ+ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) | |
| 15 | 9 12 13 14 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑢 ∈ ℝ+ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) |
| 16 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |
| 17 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → 𝑥 ∈ 𝐴 ) | |
| 18 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → 𝑢 ∈ ℝ+ ) | |
| 19 | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑢 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) ) | |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) ) |
| 21 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 22 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) | |
| 23 | 21 22 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 24 | fvoveq1 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 25 | 24 | breq1d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) ) |
| 26 | 25 | imbrov2fvoveq | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ) |
| 27 | 26 | rspcv | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 → ( ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ) |
| 28 | 23 27 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ) |
| 29 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 30 | 21 22 29 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 31 | 17 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 32 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 33 | 21 31 32 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 | 30 33 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 36 | 35 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) |
| 37 | 36 | imbi2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑤 ) ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ) |
| 38 | 28 37 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 40 | 39 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 41 | 40 | imim2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) → ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 42 | 41 | anassrs | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) → ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 43 | 42 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) → ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 44 | 43 | reximdva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) ∧ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 45 | 44 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → ( ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 46 | 20 45 | mpid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) ∧ 𝑢 ∈ ℝ+ ) → ( ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 47 | 46 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ( ∃ 𝑢 ∈ ℝ+ ∀ 𝑣 ∈ 𝐵 ( ( abs ‘ ( 𝑣 − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑢 → ( abs ‘ ( ( 𝐺 ‘ 𝑣 ) − ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 48 | 15 47 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 49 | 48 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 50 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐴 ⊆ ℂ ) | |
| 51 | 1 50 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 52 | cncfrss2 | ⊢ ( 𝐺 ∈ ( 𝐵 –cn→ 𝐶 ) → 𝐶 ⊆ ℂ ) | |
| 53 | 2 52 | syl | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
| 54 | elcncf2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ ) → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐴 –cn→ 𝐶 ) ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) | |
| 55 | 51 53 54 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐴 –cn→ 𝐶 ) ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑤 ) − ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 56 | 8 49 55 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |