This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iirev | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 1 − 𝑋 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑋 ∈ ℝ → ( 1 − 𝑋 ) ∈ ℝ ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ∈ ℝ ) |
| 5 | simp3 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 𝑋 ≤ 1 ) | |
| 6 | simp1 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 𝑋 ∈ ℝ ) | |
| 7 | subge0 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) ) |
| 9 | 5 8 | mpbird | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 0 ≤ ( 1 − 𝑋 ) ) |
| 10 | simp2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → 0 ≤ 𝑋 ) | |
| 11 | subge02 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) ) | |
| 12 | 1 6 11 | sylancr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 13 | 10 12 | mpbid | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ≤ 1 ) |
| 14 | 4 9 13 | 3jca | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) → ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) ) |
| 15 | elicc01 | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) | |
| 16 | elicc01 | ⊢ ( ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) ) | |
| 17 | 14 15 16 | 3imtr4i | ⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ) |