This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfmptc | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ ) | |
| 4 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝑇 ⊆ ℂ ) | |
| 7 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) ) | |
| 8 | 2 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ∈ ( TopOn ‘ 𝑇 ) ) |
| 9 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → 𝐴 ∈ 𝑇 ) | |
| 10 | 5 8 9 | cnmptc | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 11 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 12 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) | |
| 13 | 1 11 12 | cncfcn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 –cn→ 𝑇 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑇 ) ) ) |
| 15 | 10 14 | eleqtrrd | ⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ ) → ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ∈ ( 𝑆 –cn→ 𝑇 ) ) |