This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcncf.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| mulcncf.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | mulcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcncf.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 2 | mulcncf.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 3 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 4 | 3 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 5 | cncfrss | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) → 𝑋 ⊆ ℂ ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 7 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | ssid | ⊢ ℂ ⊆ ℂ | |
| 10 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) | |
| 11 | 4 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 12 | 3 10 11 | cncfcn | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 13 | 6 9 12 | sylancl | ⊢ ( 𝜑 → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | 1 13 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 15 | 2 13 | eleqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 | 4 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 17 | 3 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 19 | oveq12 | ⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝐵 ) → ( 𝑢 · 𝑣 ) = ( 𝐴 · 𝐵 ) ) | |
| 20 | 8 14 15 16 16 18 19 | cnmpt12 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 | 20 13 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |