This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for climcnds : bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | ||
| Assertion | climcndslem1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 2 | climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 3 | climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 4 | climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = ( 0 + 1 ) ) | |
| 6 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑥 = 0 → ( 𝑥 + 1 ) = 1 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ 1 ) ) |
| 9 | 2cn | ⊢ 2 ∈ ℂ | |
| 10 | exp1 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 2 ↑ 1 ) = 2 |
| 12 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 13 | 11 12 | eqtri | ⊢ ( 2 ↑ 1 ) = ( 1 + 1 ) |
| 14 | 8 13 | eqtrdi | ⊢ ( 𝑥 = 0 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 1 + 1 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = ( ( 1 + 1 ) − 1 ) ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 16 16 | pncan3oi | ⊢ ( ( 1 + 1 ) − 1 ) = 1 |
| 18 | 15 17 | eqtrdi | ⊢ ( 𝑥 = 0 → ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) = 1 ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑥 = 0 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 1 ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = 0 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑥 = 0 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 + 1 ) = ( 𝑗 + 1 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑥 = 𝑗 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 25 | 24 | fvoveq1d | ⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑥 = 𝑗 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) | |
| 27 | 25 26 | breq12d | ⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 29 | oveq1 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑗 + 1 ) + 1 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 31 | 30 | fvoveq1d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 32 | fveq2 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) | |
| 33 | 31 32 | breq12d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 34 | 33 | imbi2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 35 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 + 1 ) = ( 𝑁 + 1 ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 2 ↑ ( 𝑥 + 1 ) ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 37 | 36 | fvoveq1d | ⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) | |
| 39 | 37 38 | breq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 40 | 39 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑥 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 41 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 1 ) ∈ ℝ ) ) |
| 43 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 44 | 1nn | ⊢ 1 ∈ ℕ | |
| 45 | 44 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 46 | 42 43 45 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 47 | 46 | leidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 𝐹 ‘ 1 ) ) |
| 48 | 46 | recnd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 49 | 48 | mullidd | ⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 50 | 47 49 | breqtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ≤ ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 51 | 1z | ⊢ 1 ∈ ℤ | |
| 52 | eqidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) | |
| 53 | 51 52 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 54 | 0z | ⊢ 0 ∈ ℤ | |
| 55 | fveq2 | ⊢ ( 𝑛 = 0 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 0 ) ) | |
| 56 | oveq2 | ⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 0 ) ) | |
| 57 | exp0 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) | |
| 58 | 9 57 | ax-mp | ⊢ ( 2 ↑ 0 ) = 1 |
| 59 | 56 58 | eqtrdi | ⊢ ( 𝑛 = 0 → ( 2 ↑ 𝑛 ) = 1 ) |
| 60 | 59 | fveq2d | ⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ 1 ) ) |
| 61 | 59 60 | oveq12d | ⊢ ( 𝑛 = 0 → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 62 | 55 61 | eqeq12d | ⊢ ( 𝑛 = 0 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) ) |
| 63 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 64 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 66 | 62 63 65 | rspcdva | ⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 67 | 54 66 | seq1i | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = ( 1 · ( 𝐹 ‘ 1 ) ) ) |
| 68 | 50 53 67 | 3brtr4d | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) |
| 69 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) | |
| 70 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝜑 ) | |
| 71 | 2nn | ⊢ 2 ∈ ℕ | |
| 72 | peano2nn0 | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) | |
| 73 | 72 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 74 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) | |
| 75 | 71 73 74 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 76 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 77 | eluznn | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) | |
| 78 | 75 76 77 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 79 | 70 78 1 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 80 | fveq2 | ⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 81 | 80 | eleq1d | ⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
| 82 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 83 | 81 82 75 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 85 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 86 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝜑 ) | |
| 87 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 88 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 89 | 87 88 77 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 90 | 86 89 1 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 91 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝜑 ) | |
| 92 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 93 | 87 92 77 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 94 | 91 93 3 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( 𝑛 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 95 | 85 90 94 | monoord2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 96 | 95 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 97 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 98 | 97 | breq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 99 | 98 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 100 | 96 76 99 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 101 | 69 79 84 100 | fsumle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 102 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ) | |
| 103 | hashcl | ⊢ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) | |
| 104 | 102 103 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 105 | 104 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
| 106 | 75 | nnred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 107 | 106 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 108 | hashcl | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) | |
| 109 | 69 108 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℕ0 ) |
| 110 | 109 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ∈ ℂ ) |
| 111 | 2z | ⊢ 2 ∈ ℤ | |
| 112 | zexpcl | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) | |
| 113 | 111 73 112 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 114 | 2re | ⊢ 2 ∈ ℝ | |
| 115 | 1le2 | ⊢ 1 ≤ 2 | |
| 116 | nn0p1nn | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 117 | 116 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 118 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 119 | 117 118 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 120 | leexp2a | ⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 121 | 114 115 119 120 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 122 | 11 121 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 123 | 111 | eluz1i | ⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 124 | 113 122 123 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 125 | uz2m1nn | ⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) | |
| 126 | 124 125 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
| 127 | 126 118 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 128 | peano2zm | ⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) | |
| 129 | 113 128 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ) |
| 130 | peano2nn0 | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) | |
| 131 | 73 130 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) |
| 132 | zexpcl | ⊢ ( ( 2 ∈ ℤ ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) | |
| 133 | 111 131 132 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ ) |
| 134 | peano2zm | ⊢ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) | |
| 135 | 133 134 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ) |
| 136 | 113 | zred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 137 | 133 | zred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ∈ ℝ ) |
| 138 | 1red | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 139 | 73 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 140 | uzid | ⊢ ( ( 𝑗 + 1 ) ∈ ℤ → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) | |
| 141 | peano2uz | ⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) | |
| 142 | leexp2a | ⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) | |
| 143 | 114 115 142 | mp3an12 | ⊢ ( ( ( 𝑗 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 144 | 139 140 141 143 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≤ ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) ) |
| 145 | 136 137 138 144 | lesub1dd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
| 146 | eluz2 | ⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℤ ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ≤ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) | |
| 147 | 129 135 145 146 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 148 | elfzuzb | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ↔ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) ) | |
| 149 | 127 147 148 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 150 | fzsplit | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) | |
| 151 | 149 150 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 152 | npcan | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 153 | 107 16 152 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 154 | 153 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 155 | 154 | uneq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + 1 ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 156 | 151 155 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 157 | 156 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 158 | expp1 | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) | |
| 159 | 9 73 158 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) ) |
| 160 | 107 | times2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · 2 ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 161 | 159 160 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 162 | 161 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) ) |
| 163 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 164 | 107 107 163 | addsubd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 2 ↑ ( 𝑗 + 1 ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 165 | 162 164 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 166 | uztrn | ⊢ ( ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 167 | 147 127 166 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 168 | 167 118 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ ) |
| 169 | 168 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 ) |
| 170 | hashfz1 | ⊢ ( ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) | |
| 171 | 169 170 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) |
| 172 | 126 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 ) |
| 173 | hashfz1 | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) | |
| 174 | 172 173 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) |
| 175 | 174 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 176 | 165 171 175 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 177 | 106 | ltm1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 178 | fzdisj | ⊢ ( ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) | |
| 179 | 177 178 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) |
| 180 | hashun | ⊢ ( ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∩ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) = ∅ ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) | |
| 181 | 102 69 179 180 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ♯ ‘ ( ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∪ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 182 | 157 176 181 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) + ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) ) |
| 183 | 105 107 110 182 | addcanad | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) ) |
| 184 | 183 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 185 | fveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) | |
| 186 | oveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 187 | 186 | fveq2d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 188 | 186 187 | oveq12d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 189 | 185 188 | eqeq12d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 190 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 191 | 189 190 73 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 192 | 83 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 193 | fsumconst | ⊢ ( ( ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ∧ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) | |
| 194 | 69 192 193 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 195 | 184 191 194 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 196 | 101 195 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 197 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 198 | 70 197 1 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 199 | 102 198 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 200 | 69 79 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 201 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 202 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 203 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 204 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 205 | 71 203 204 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 206 | 205 | nnred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 207 | fveq2 | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) | |
| 208 | 207 | eleq1d | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
| 209 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 210 | 208 209 205 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 211 | 206 210 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 212 | 4 211 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 213 | 201 202 212 | serfre | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
| 214 | 213 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 215 | 136 83 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 216 | 191 215 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 217 | le2add | ⊢ ( ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ∧ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) | |
| 218 | 199 200 214 216 217 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∧ Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 219 | 196 218 | mpan2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 220 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 221 | 1 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 222 | 70 197 221 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 223 | 220 127 222 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 224 | 223 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 225 | 224 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ↔ Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 226 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 227 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 228 | 70 227 221 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 229 | 226 167 228 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ) |
| 230 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ∈ Fin ) | |
| 231 | 179 156 230 228 | fsumsplit | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 232 | 229 231 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 233 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) | |
| 234 | 233 201 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 235 | seqp1 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 236 | 234 235 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 237 | 232 236 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ↔ ( Σ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 2 ↑ ( 𝑗 + 1 ) ) ... ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 238 | 219 225 237 | 3imtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) |
| 239 | 238 | expcom | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝜑 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 240 | 239 | a2d | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( ( 𝑗 + 1 ) + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 241 | 22 28 34 40 68 240 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 242 | 241 | impcom | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑁 ) ) |