This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for climcnds : bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
||
| climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
||
| Assertion | climcndslem1 | |- ( ( ph /\ N e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| 2 | climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
|
| 3 | climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 4 | climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
|
| 5 | oveq1 | |- ( x = 0 -> ( x + 1 ) = ( 0 + 1 ) ) |
|
| 6 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 7 | 5 6 | eqtrdi | |- ( x = 0 -> ( x + 1 ) = 1 ) |
| 8 | 7 | oveq2d | |- ( x = 0 -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ 1 ) ) |
| 9 | 2cn | |- 2 e. CC |
|
| 10 | exp1 | |- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
|
| 11 | 9 10 | ax-mp | |- ( 2 ^ 1 ) = 2 |
| 12 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 13 | 11 12 | eqtri | |- ( 2 ^ 1 ) = ( 1 + 1 ) |
| 14 | 8 13 | eqtrdi | |- ( x = 0 -> ( 2 ^ ( x + 1 ) ) = ( 1 + 1 ) ) |
| 15 | 14 | oveq1d | |- ( x = 0 -> ( ( 2 ^ ( x + 1 ) ) - 1 ) = ( ( 1 + 1 ) - 1 ) ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 16 16 | pncan3oi | |- ( ( 1 + 1 ) - 1 ) = 1 |
| 18 | 15 17 | eqtrdi | |- ( x = 0 -> ( ( 2 ^ ( x + 1 ) ) - 1 ) = 1 ) |
| 19 | 18 | fveq2d | |- ( x = 0 -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` 1 ) ) |
| 20 | fveq2 | |- ( x = 0 -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` 0 ) ) |
|
| 21 | 19 20 | breq12d | |- ( x = 0 -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) ) |
| 22 | 21 | imbi2d | |- ( x = 0 -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) ) ) |
| 23 | oveq1 | |- ( x = j -> ( x + 1 ) = ( j + 1 ) ) |
|
| 24 | 23 | oveq2d | |- ( x = j -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( j + 1 ) ) ) |
| 25 | 24 | fvoveq1d | |- ( x = j -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
| 26 | fveq2 | |- ( x = j -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` j ) ) |
|
| 27 | 25 26 | breq12d | |- ( x = j -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) ) |
| 28 | 27 | imbi2d | |- ( x = j -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) ) ) |
| 29 | oveq1 | |- ( x = ( j + 1 ) -> ( x + 1 ) = ( ( j + 1 ) + 1 ) ) |
|
| 30 | 29 | oveq2d | |- ( x = ( j + 1 ) -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
| 31 | 30 | fvoveq1d | |- ( x = ( j + 1 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
| 32 | fveq2 | |- ( x = ( j + 1 ) -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` ( j + 1 ) ) ) |
|
| 33 | 31 32 | breq12d | |- ( x = ( j + 1 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) |
| 34 | 33 | imbi2d | |- ( x = ( j + 1 ) -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
| 35 | oveq1 | |- ( x = N -> ( x + 1 ) = ( N + 1 ) ) |
|
| 36 | 35 | oveq2d | |- ( x = N -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( N + 1 ) ) ) |
| 37 | 36 | fvoveq1d | |- ( x = N -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) ) |
| 38 | fveq2 | |- ( x = N -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` N ) ) |
|
| 39 | 37 38 | breq12d | |- ( x = N -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) |
| 40 | 39 | imbi2d | |- ( x = N -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) ) |
| 41 | fveq2 | |- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
|
| 42 | 41 | eleq1d | |- ( k = 1 -> ( ( F ` k ) e. RR <-> ( F ` 1 ) e. RR ) ) |
| 43 | 1 | ralrimiva | |- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
| 44 | 1nn | |- 1 e. NN |
|
| 45 | 44 | a1i | |- ( ph -> 1 e. NN ) |
| 46 | 42 43 45 | rspcdva | |- ( ph -> ( F ` 1 ) e. RR ) |
| 47 | 46 | leidd | |- ( ph -> ( F ` 1 ) <_ ( F ` 1 ) ) |
| 48 | 46 | recnd | |- ( ph -> ( F ` 1 ) e. CC ) |
| 49 | 48 | mullidd | |- ( ph -> ( 1 x. ( F ` 1 ) ) = ( F ` 1 ) ) |
| 50 | 47 49 | breqtrrd | |- ( ph -> ( F ` 1 ) <_ ( 1 x. ( F ` 1 ) ) ) |
| 51 | 1z | |- 1 e. ZZ |
|
| 52 | eqidd | |- ( ph -> ( F ` 1 ) = ( F ` 1 ) ) |
|
| 53 | 51 52 | seq1i | |- ( ph -> ( seq 1 ( + , F ) ` 1 ) = ( F ` 1 ) ) |
| 54 | 0z | |- 0 e. ZZ |
|
| 55 | fveq2 | |- ( n = 0 -> ( G ` n ) = ( G ` 0 ) ) |
|
| 56 | oveq2 | |- ( n = 0 -> ( 2 ^ n ) = ( 2 ^ 0 ) ) |
|
| 57 | exp0 | |- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
|
| 58 | 9 57 | ax-mp | |- ( 2 ^ 0 ) = 1 |
| 59 | 56 58 | eqtrdi | |- ( n = 0 -> ( 2 ^ n ) = 1 ) |
| 60 | 59 | fveq2d | |- ( n = 0 -> ( F ` ( 2 ^ n ) ) = ( F ` 1 ) ) |
| 61 | 59 60 | oveq12d | |- ( n = 0 -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( 1 x. ( F ` 1 ) ) ) |
| 62 | 55 61 | eqeq12d | |- ( n = 0 -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` 0 ) = ( 1 x. ( F ` 1 ) ) ) ) |
| 63 | 4 | ralrimiva | |- ( ph -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
| 64 | 0nn0 | |- 0 e. NN0 |
|
| 65 | 64 | a1i | |- ( ph -> 0 e. NN0 ) |
| 66 | 62 63 65 | rspcdva | |- ( ph -> ( G ` 0 ) = ( 1 x. ( F ` 1 ) ) ) |
| 67 | 54 66 | seq1i | |- ( ph -> ( seq 0 ( + , G ) ` 0 ) = ( 1 x. ( F ` 1 ) ) ) |
| 68 | 50 53 67 | 3brtr4d | |- ( ph -> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) |
| 69 | fzfid | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin ) |
|
| 70 | simpl | |- ( ( ph /\ j e. NN0 ) -> ph ) |
|
| 71 | 2nn | |- 2 e. NN |
|
| 72 | peano2nn0 | |- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
|
| 73 | 72 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN0 ) |
| 74 | nnexpcl | |- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
|
| 75 | 71 73 74 | sylancr | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
| 76 | elfzuz | |- ( k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 77 | eluznn | |- ( ( ( 2 ^ ( j + 1 ) ) e. NN /\ k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
|
| 78 | 75 76 77 | syl2an | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> k e. NN ) |
| 79 | 70 78 1 | syl2an2r | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
| 80 | fveq2 | |- ( k = ( 2 ^ ( j + 1 ) ) -> ( F ` k ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 81 | 80 | eleq1d | |- ( k = ( 2 ^ ( j + 1 ) ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) ) |
| 82 | 43 | adantr | |- ( ( ph /\ j e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
| 83 | 81 82 75 | rspcdva | |- ( ( ph /\ j e. NN0 ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
| 84 | 83 | adantr | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
| 85 | simpr | |- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 86 | simplll | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> ph ) |
|
| 87 | 75 | adantr | |- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
| 88 | elfzuz | |- ( k e. ( ( 2 ^ ( j + 1 ) ) ... n ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 89 | 87 88 77 | syl2an | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> k e. NN ) |
| 90 | 86 89 1 | syl2anc | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> ( F ` k ) e. RR ) |
| 91 | simplll | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> ph ) |
|
| 92 | elfzuz | |- ( k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
|
| 93 | 87 92 77 | syl2an | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> k e. NN ) |
| 94 | 91 93 3 | syl2anc | |- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 95 | 85 90 94 | monoord2 | |- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 96 | 95 | ralrimiva | |- ( ( ph /\ j e. NN0 ) -> A. n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 97 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 98 | 97 | breq1d | |- ( n = k -> ( ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) <-> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 99 | 98 | rspccva | |- ( ( A. n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) /\ k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 100 | 96 76 99 | syl2an | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 101 | 69 79 84 100 | fsumle | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 102 | fzfid | |- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin ) |
|
| 103 | hashcl | |- ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. NN0 ) |
|
| 104 | 102 103 | syl | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. NN0 ) |
| 105 | 104 | nn0cnd | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. CC ) |
| 106 | 75 | nnred | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
| 107 | 106 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. CC ) |
| 108 | hashcl | |- ( ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. NN0 ) |
|
| 109 | 69 108 | syl | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. NN0 ) |
| 110 | 109 | nn0cnd | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. CC ) |
| 111 | 2z | |- 2 e. ZZ |
|
| 112 | zexpcl | |- ( ( 2 e. ZZ /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
|
| 113 | 111 73 112 | sylancr | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
| 114 | 2re | |- 2 e. RR |
|
| 115 | 1le2 | |- 1 <_ 2 |
|
| 116 | nn0p1nn | |- ( j e. NN0 -> ( j + 1 ) e. NN ) |
|
| 117 | 116 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN ) |
| 118 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 119 | 117 118 | eleqtrdi | |- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 120 | leexp2a | |- ( ( 2 e. RR /\ 1 <_ 2 /\ ( j + 1 ) e. ( ZZ>= ` 1 ) ) -> ( 2 ^ 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
|
| 121 | 114 115 119 120 | mp3an12i | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
| 122 | 11 121 | eqbrtrrid | |- ( ( ph /\ j e. NN0 ) -> 2 <_ ( 2 ^ ( j + 1 ) ) ) |
| 123 | 111 | eluz1i | |- ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) <-> ( ( 2 ^ ( j + 1 ) ) e. ZZ /\ 2 <_ ( 2 ^ ( j + 1 ) ) ) ) |
| 124 | 113 122 123 | sylanbrc | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) ) |
| 125 | uz2m1nn | |- ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
|
| 126 | 124 125 | syl | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
| 127 | 126 118 | eleqtrdi | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 128 | peano2zm | |- ( ( 2 ^ ( j + 1 ) ) e. ZZ -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ ) |
|
| 129 | 113 128 | syl | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ ) |
| 130 | peano2nn0 | |- ( ( j + 1 ) e. NN0 -> ( ( j + 1 ) + 1 ) e. NN0 ) |
|
| 131 | 73 130 | syl | |- ( ( ph /\ j e. NN0 ) -> ( ( j + 1 ) + 1 ) e. NN0 ) |
| 132 | zexpcl | |- ( ( 2 e. ZZ /\ ( ( j + 1 ) + 1 ) e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ ) |
|
| 133 | 111 131 132 | sylancr | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ ) |
| 134 | peano2zm | |- ( ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ ) |
|
| 135 | 133 134 | syl | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ ) |
| 136 | 113 | zred | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
| 137 | 133 | zred | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. RR ) |
| 138 | 1red | |- ( ( ph /\ j e. NN0 ) -> 1 e. RR ) |
|
| 139 | 73 | nn0zd | |- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. ZZ ) |
| 140 | uzid | |- ( ( j + 1 ) e. ZZ -> ( j + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
|
| 141 | peano2uz | |- ( ( j + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
|
| 142 | leexp2a | |- ( ( 2 e. RR /\ 1 <_ 2 /\ ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
|
| 143 | 114 115 142 | mp3an12 | |- ( ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
| 144 | 139 140 141 143 | 4syl | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
| 145 | 136 137 138 144 | lesub1dd | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) <_ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
| 146 | eluz2 | |- ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <-> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ /\ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) <_ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
|
| 147 | 129 135 145 146 | syl3anbrc | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
| 148 | elfzuzb | |- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <-> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) /\ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) ) |
|
| 149 | 127 147 148 | sylanbrc | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
| 150 | fzsplit | |- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
|
| 151 | 149 150 | syl | |- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
| 152 | npcan | |- ( ( ( 2 ^ ( j + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 153 | 107 16 152 | sylancl | |- ( ( ph /\ j e. NN0 ) -> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) = ( 2 ^ ( j + 1 ) ) ) |
| 154 | 153 | oveq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
| 155 | 154 | uneq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
| 156 | 151 155 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
| 157 | 156 | fveq2d | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
| 158 | expp1 | |- ( ( 2 e. CC /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. 2 ) ) |
|
| 159 | 9 73 158 | sylancr | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. 2 ) ) |
| 160 | 107 | times2d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. 2 ) = ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 161 | 159 160 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 162 | 161 | oveq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) - 1 ) ) |
| 163 | 1cnd | |- ( ( ph /\ j e. NN0 ) -> 1 e. CC ) |
|
| 164 | 107 107 163 | addsubd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 165 | 162 164 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 166 | uztrn | |- ( ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
|
| 167 | 147 127 166 | syl2anc | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 168 | 167 118 | eleqtrrdi | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN ) |
| 169 | 168 | nnnn0d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN0 ) |
| 170 | hashfz1 | |- ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN0 -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
|
| 171 | 169 170 | syl | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
| 172 | 126 | nnnn0d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN0 ) |
| 173 | hashfz1 | |- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN0 -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( j + 1 ) ) - 1 ) ) |
|
| 174 | 172 173 | syl | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( j + 1 ) ) - 1 ) ) |
| 175 | 174 | oveq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 176 | 165 171 175 | 3eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
| 177 | 106 | ltm1d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) < ( 2 ^ ( j + 1 ) ) ) |
| 178 | fzdisj | |- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) < ( 2 ^ ( j + 1 ) ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) |
|
| 179 | 177 178 | syl | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) |
| 180 | hashun | |- ( ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin /\ ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) -> ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
|
| 181 | 102 69 179 180 | syl3anc | |- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
| 182 | 157 176 181 | 3eqtr3d | |- ( ( ph /\ j e. NN0 ) -> ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
| 183 | 105 107 110 182 | addcanad | |- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) = ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
| 184 | 183 | oveq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 185 | fveq2 | |- ( n = ( j + 1 ) -> ( G ` n ) = ( G ` ( j + 1 ) ) ) |
|
| 186 | oveq2 | |- ( n = ( j + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( j + 1 ) ) ) |
|
| 187 | 186 | fveq2d | |- ( n = ( j + 1 ) -> ( F ` ( 2 ^ n ) ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 188 | 186 187 | oveq12d | |- ( n = ( j + 1 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 189 | 185 188 | eqeq12d | |- ( n = ( j + 1 ) -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
| 190 | 63 | adantr | |- ( ( ph /\ j e. NN0 ) -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
| 191 | 189 190 73 | rspcdva | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 192 | 83 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) |
| 193 | fsumconst | |- ( ( ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin /\ ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
|
| 194 | 69 192 193 | syl2anc | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
| 195 | 184 191 194 | 3eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) = sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
| 196 | 101 195 | breqtrrd | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) |
| 197 | elfznn | |- ( k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. NN ) |
|
| 198 | 70 197 1 | syl2an | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
| 199 | 102 198 | fsumrecl | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) |
| 200 | 69 79 | fsumrecl | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) |
| 201 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 202 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 203 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 204 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 205 | 71 203 204 | sylancr | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 206 | 205 | nnred | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
| 207 | fveq2 | |- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
|
| 208 | 207 | eleq1d | |- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
| 209 | 43 | adantr | |- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
| 210 | 208 209 205 | rspcdva | |- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
| 211 | 206 210 | remulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
| 212 | 4 211 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
| 213 | 201 202 212 | serfre | |- ( ph -> seq 0 ( + , G ) : NN0 --> RR ) |
| 214 | 213 | ffvelcdmda | |- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
| 215 | 136 83 | remulcld | |- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) e. RR ) |
| 216 | 191 215 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) e. RR ) |
| 217 | le2add | |- ( ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) e. RR /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) /\ ( ( seq 0 ( + , G ) ` j ) e. RR /\ ( G ` ( j + 1 ) ) e. RR ) ) -> ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
|
| 218 | 199 200 214 216 217 | syl22anc | |- ( ( ph /\ j e. NN0 ) -> ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
| 219 | 196 218 | mpan2d | |- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
| 220 | eqidd | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 221 | 1 | recnd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 222 | 70 197 221 | syl2an | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. CC ) |
| 223 | 220 127 222 | fsumser | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
| 224 | 223 | eqcomd | |- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) = sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) ) |
| 225 | 224 | breq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) <-> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) ) ) |
| 226 | eqidd | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 227 | elfznn | |- ( k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> k e. NN ) |
|
| 228 | 70 227 221 | syl2an | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. CC ) |
| 229 | 226 167 228 | fsumser | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
| 230 | fzfid | |- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin ) |
|
| 231 | 179 156 230 228 | fsumsplit | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) = ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) ) |
| 232 | 229 231 | eqtr3d | |- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) ) |
| 233 | simpr | |- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
|
| 234 | 233 201 | eleqtrdi | |- ( ( ph /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 235 | seqp1 | |- ( j e. ( ZZ>= ` 0 ) -> ( seq 0 ( + , G ) ` ( j + 1 ) ) = ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
|
| 236 | 234 235 | syl | |- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` ( j + 1 ) ) = ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
| 237 | 232 236 | breq12d | |- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) <-> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
| 238 | 219 225 237 | 3imtr4d | |- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) |
| 239 | 238 | expcom | |- ( j e. NN0 -> ( ph -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
| 240 | 239 | a2d | |- ( j e. NN0 -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) -> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
| 241 | 22 28 34 40 68 240 | nn0ind | |- ( N e. NN0 -> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) |
| 242 | 241 | impcom | |- ( ( ph /\ N e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) |