This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy condensation test. If a ( k ) is a decreasing sequence of nonnegative terms, then sum_ k e. NN a ( k ) converges iff sum_ n e. NN0 2 ^ n x. a ( 2 ^ n ) converges. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | ||
| Assertion | climcnds | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 2 | climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 3 | climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 4 | climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → 1 ∈ ℤ ) | |
| 7 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 8 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 9 | 2nn | ⊢ 2 ∈ ℕ | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 11 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 13 | 12 | nnred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 14 | fveq2 | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
| 16 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 18 | 15 17 12 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 19 | 13 18 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 20 | 4 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 21 | 8 20 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 22 | 5 7 21 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 25 | 24 5 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 28 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 29 | peano2uz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 31 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) | |
| 32 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( 𝑗 + 1 ) ) → 𝑛 ∈ ℕ ) | |
| 33 | 31 32 21 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... ( 𝑗 + 1 ) ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 34 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝜑 ) | |
| 35 | elfz1eq | ⊢ ( 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑛 = ( 𝑗 + 1 ) ) | |
| 36 | 35 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑛 = ( 𝑗 + 1 ) ) |
| 37 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 38 | peano2nn0 | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 41 | 36 40 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 42 | 12 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ0 ) |
| 43 | 42 | nn0ge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 2 ↑ 𝑛 ) ) |
| 44 | 14 | breq2d | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 0 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 0 ≤ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 45 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 47 | 44 46 12 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) |
| 48 | 13 18 43 47 | mulge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 49 | 48 4 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 50 | 34 41 49 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 51 | 25 30 33 50 | sermono | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) |
| 53 | 2re | ⊢ 2 ∈ ℝ | |
| 54 | eqidd | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 55 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 56 | simpr | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 57 | 5 6 54 55 56 | isumrecl | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 58 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 59 | 53 57 58 | sylancr | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 60 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 61 | 5 7 1 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 63 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 64 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) | |
| 65 | 9 63 64 | sylancr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 66 | 62 65 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 67 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) | |
| 68 | 53 66 67 | sylancr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 69 | 59 | adantr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 70 | 1 2 3 4 | climcndslem2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 71 | 70 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 72 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 73 | 65 5 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 74 | simpll | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) | |
| 75 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 76 | 1 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 77 | 74 75 76 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 78 | 72 73 77 | fsumser | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
| 79 | 1zzd | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℤ ) | |
| 80 | fzfid | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ) | |
| 81 | 75 | ssriv | ⊢ ( 1 ... ( 2 ↑ 𝑗 ) ) ⊆ ℕ |
| 82 | 81 | a1i | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ⊆ ℕ ) |
| 83 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 84 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 85 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 86 | simplr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 87 | 5 79 80 82 83 84 85 86 | isumless | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) |
| 88 | 78 87 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) |
| 89 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 90 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 91 | 90 | a1i | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℝ+ ) |
| 92 | 66 89 91 | lemul2d | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ≤ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ↔ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 93 | 88 92 | mpbid | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
| 94 | 60 68 69 71 93 | letrd | ⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
| 95 | 94 | ralrimiva | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) |
| 96 | brralrspcev | ⊢ ( ( ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ 𝑥 ) | |
| 97 | 59 95 96 | syl2anc | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ 𝑥 ) |
| 98 | 5 6 23 52 97 | climsup | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) ⇝ sup ( ran seq 1 ( + , 𝐺 ) , ℝ , < ) ) |
| 99 | climrel | ⊢ Rel ⇝ | |
| 100 | 99 | releldmi | ⊢ ( seq 1 ( + , 𝐺 ) ⇝ sup ( ran seq 1 ( + , 𝐺 ) , ℝ , < ) → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 101 | 98 100 | syl | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 102 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 103 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 104 | 103 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 105 | 20 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
| 106 | 102 104 105 | iserex | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 107 | 106 | biimpar | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 108 | 101 107 | syldan | ⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 109 | 1zzd | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → 1 ∈ ℤ ) | |
| 110 | 61 | adantr | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 111 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ℕ ) | |
| 112 | 31 111 1 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 113 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝜑 ) | |
| 114 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 115 | 114 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 116 | elfz1eq | ⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑘 = ( 𝑗 + 1 ) ) | |
| 117 | eleq1 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑘 ∈ ℕ ↔ ( 𝑗 + 1 ) ∈ ℕ ) ) | |
| 118 | 117 | biimparc | ⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ 𝑘 = ( 𝑗 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 119 | 115 116 118 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 120 | 113 119 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 121 | 25 30 112 120 | sermono | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
| 122 | 121 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
| 123 | 0zd | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → 0 ∈ ℤ ) | |
| 124 | eqidd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 125 | 20 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 126 | simpr | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 127 | 102 123 124 125 126 | isumrecl | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 128 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 129 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 130 | 102 129 20 | serfre | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ) |
| 132 | ffvelcdm | ⊢ ( ( seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) | |
| 133 | 131 37 132 | syl2an | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 134 | 127 | adantr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 135 | 110 | adantr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 136 | simpr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 137 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 138 | 39 | adantl | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 139 | 138 | nn0red | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 140 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) | |
| 141 | 9 138 140 | sylancr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 142 | 141 | nnred | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 143 | 2z | ⊢ 2 ∈ ℤ | |
| 144 | uzid | ⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 145 | 143 144 | ax-mp | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 146 | bernneq3 | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 𝑗 + 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 147 | 145 138 146 | sylancr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) < ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 148 | 139 142 147 | ltled | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 149 | 137 | peano2zd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 150 | 141 | nnzd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 151 | eluz | ⊢ ( ( ( 𝑗 + 1 ) ∈ ℤ ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 152 | 149 150 151 | syl2anc | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ↔ ( 𝑗 + 1 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 153 | 148 152 | mpbird | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
| 154 | eluzp1m1 | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 155 | 137 153 154 | syl2anc | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 156 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) | |
| 157 | 136 155 156 | syl2anc | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ∈ ℕ ) |
| 158 | 135 157 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ∈ ℝ ) |
| 159 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 160 | simpll | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝜑 ) | |
| 161 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℕ ) | |
| 162 | 160 161 1 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 163 | 114 | adantl | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 164 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) | |
| 165 | eluznn | ⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 166 | 163 164 165 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 167 | 160 166 2 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 168 | 159 155 162 167 | sermono | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) |
| 169 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 170 | 1 2 3 4 | climcndslem1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 171 | 160 169 170 | syl2anc | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 172 | 128 158 133 168 171 | letrd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 173 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 174 | 169 102 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 175 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 𝑗 ) → 𝑛 ∈ ℕ0 ) | |
| 176 | 160 175 105 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
| 177 | 173 174 176 | fsumser | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ... 𝑗 ) ( 𝐺 ‘ 𝑛 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 178 | 0zd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℤ ) | |
| 179 | fzfid | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 0 ... 𝑗 ) ∈ Fin ) | |
| 180 | 175 | ssriv | ⊢ ( 0 ... 𝑗 ) ⊆ ℕ0 |
| 181 | 180 | a1i | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( 0 ... 𝑗 ) ⊆ ℕ0 ) |
| 182 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 183 | 20 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 184 | 49 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 185 | simplr | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 186 | 102 178 179 181 182 183 184 185 | isumless | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ... 𝑗 ) ( 𝐺 ‘ 𝑛 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
| 187 | 177 186 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
| 188 | 128 133 134 172 187 | letrd | ⊢ ( ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
| 189 | 188 | ralrimiva | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) |
| 190 | brralrspcev | ⊢ ( ( Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ 𝑥 ) | |
| 191 | 127 189 190 | syl2anc | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ≤ 𝑥 ) |
| 192 | 5 109 110 122 191 | climsup | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ⇝ sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
| 193 | 99 | releldmi | ⊢ ( seq 1 ( + , 𝐹 ) ⇝ sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 194 | 192 193 | syl | ⊢ ( ( 𝜑 ∧ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 195 | 108 194 | impbida | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) ) |