This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the # function. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | 1 | hashgval | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 3 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 4 | 1 | hashgf1o | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 |
| 5 | f1of | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0 ) | |
| 6 | 4 5 | ax-mp | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω ⟶ ℕ0 |
| 7 | 6 | ffvelcdmi | ⊢ ( ( card ‘ 𝐴 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 8 | 3 7 | syl | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 9 | 2 8 | eqeltrrd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |