This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to the zeroth power. Under our definition, 0 ^ 0 = 1 ( 0exp0e1 ), following standard convention, for instance Definition 10-4.1 of Gleason p. 134. (Contributed by NM, 20-May-2004) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | expval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℤ ) → ( 𝐴 ↑ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) ) |
| 4 | eqid | ⊢ 0 = 0 | |
| 5 | 4 | iftruei | ⊢ if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) = 1 |
| 6 | 3 5 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |