This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardun | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
| 3 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) | |
| 4 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 5 | 4 | hashgval | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 9 | ficardom | ⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) | |
| 10 | 4 | hashgadd | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) ) |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) ) |
| 12 | 4 | hashgval | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 13 | 4 | hashgval | ⊢ ( 𝐵 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 14 | 12 13 | oveqan12d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 17 | 2 7 16 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |