This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of Gleason p. 134. When A is nonzero, this holds for all integers N , see expneg . (Contributed by NM, 20-May-2005) (Revised by Mario Carneiro, 2-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 2 3 | eleq2s | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 6 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 7 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) = 𝐴 ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) = 𝐴 ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · ( ( ℕ × { 𝐴 } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
| 11 | expnnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) ) | |
| 12 | 6 11 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 13 | expnnval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) = ( ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) · 𝐴 ) ) |
| 15 | 10 12 14 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
| 16 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 17 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 18 | 16 17 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( 1 · 𝐴 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 1 ) = ( 1 · 𝐴 ) ) |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 21 | 20 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝑁 + 1 ) = ( 0 + 1 ) ) |
| 22 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 23 | 21 22 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝑁 + 1 ) = 1 ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( 𝐴 ↑ 1 ) ) |
| 25 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) | |
| 26 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 27 | 25 26 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ 𝑁 ) = 1 ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 29 | 19 24 28 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 = 0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
| 30 | 15 29 | jaodan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |
| 31 | 1 30 | sylan2b | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 + 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) · 𝐴 ) ) |