This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leexp2a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) | |
| 3 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) | |
| 4 | 0lt1 | ⊢ 0 < 1 | |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 1 ) |
| 6 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ 𝐴 ) | |
| 7 | 2 3 1 5 6 | ltletrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝐴 ) |
| 8 | 1 7 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ+ ) |
| 9 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 11 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ+ ) |
| 13 | 12 | rpred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 15 | 14 | mullidd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐴 ↑ 𝑀 ) ) |
| 16 | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 18 | expge1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ) | |
| 19 | 1 17 6 18 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) ) |
| 20 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 21 | 7 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ≠ 0 ) |
| 22 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 24 | expsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) | |
| 25 | 20 21 23 10 24 | syl22anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ ( 𝑁 − 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 26 | 19 25 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ≤ ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) |
| 27 | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) | |
| 28 | 8 23 27 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| 29 | 28 | rpred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 30 | 3 29 12 | lemuldivd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 1 · ( 𝐴 ↑ 𝑀 ) ) ≤ ( 𝐴 ↑ 𝑁 ) ↔ 1 ≤ ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 31 | 26 30 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 · ( 𝐴 ↑ 𝑀 ) ) ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 32 | 15 31 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( 𝐴 ↑ 𝑁 ) ) |