This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for climcnds : bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | ||
| Assertion | climcndslem2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 2 | climcnds.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 3 | climcnds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 4 | climcnds.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 1 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 1 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = 1 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 1 ) ) | |
| 7 | 2cn | ⊢ 2 ∈ ℂ | |
| 8 | exp1 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 2 ↑ 1 ) = 2 |
| 10 | 6 9 | eqtrdi | ⊢ ( 𝑥 = 1 → ( 2 ↑ 𝑥 ) = 2 ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑥 = 1 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = 1 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) |
| 13 | 5 12 | breq12d | ⊢ ( 𝑥 = 1 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝑗 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑗 ) ) | |
| 17 | 16 | fveq2d | ⊢ ( 𝑥 = 𝑗 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = 𝑗 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 19 | 15 18 | breq12d | ⊢ ( 𝑥 = 𝑗 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝑗 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ) | |
| 22 | oveq2 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 25 | 21 24 | breq12d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ) | |
| 28 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) | |
| 29 | 28 | fveq2d | ⊢ ( 𝑥 = 𝑁 → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) = ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) |
| 31 | 27 30 | breq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑥 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) | |
| 34 | 33 | breq2d | ⊢ ( 𝑘 = 1 → ( 0 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 0 ≤ ( 𝐹 ‘ 1 ) ) ) |
| 35 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 36 | 1nn | ⊢ 1 ∈ ℕ | |
| 37 | 36 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 38 | 34 35 37 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 1 ) ) |
| 39 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 2 ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑘 = 2 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 2 ) ∈ ℝ ) ) |
| 41 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 42 | 2nn | ⊢ 2 ∈ ℕ | |
| 43 | 42 | a1i | ⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 44 | 40 41 43 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ∈ ℝ ) |
| 45 | 33 | eleq1d | ⊢ ( 𝑘 = 1 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 1 ) ∈ ℝ ) ) |
| 46 | 45 41 37 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 47 | 44 46 | addge02d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝐹 ‘ 1 ) ↔ ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 48 | 38 47 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
| 49 | 46 44 | readdcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ∈ ℝ ) |
| 50 | 43 | nnrpd | ⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 51 | 44 49 50 | lemul2d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 2 ) ≤ ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ↔ ( 2 · ( 𝐹 ‘ 2 ) ) ≤ ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) ) |
| 52 | 48 51 | mpbid | ⊢ ( 𝜑 → ( 2 · ( 𝐹 ‘ 2 ) ) ≤ ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 53 | 1z | ⊢ 1 ∈ ℤ | |
| 54 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) | |
| 55 | oveq2 | ⊢ ( 𝑛 = 1 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 1 ) ) | |
| 56 | 55 9 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 2 ↑ 𝑛 ) = 2 ) |
| 57 | 56 | fveq2d | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ 2 ) ) |
| 58 | 56 57 | oveq12d | ⊢ ( 𝑛 = 1 → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 59 | 54 58 | eqeq12d | ⊢ ( 𝑛 = 1 → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) ) |
| 60 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 61 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 62 | 61 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 63 | 59 60 62 | rspcdva | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 64 | 53 63 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) = ( 2 · ( 𝐹 ‘ 2 ) ) ) |
| 65 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 66 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 67 | eqidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) | |
| 68 | 53 67 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 69 | eqidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 2 ) ) | |
| 70 | 65 37 66 68 69 | seqp1d | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ 2 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
| 71 | 70 | oveq2d | ⊢ ( 𝜑 → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) = ( 2 · ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) ) |
| 72 | 52 64 71 | 3brtr4d | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 1 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ 2 ) ) ) |
| 73 | fveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) | |
| 74 | oveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 75 | 74 | fveq2d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 76 | 74 75 | oveq12d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 77 | 73 76 | eqeq12d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 78 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ0 ( 𝐺 ‘ 𝑛 ) = ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ) |
| 79 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 80 | 79 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 81 | 80 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 82 | 77 78 81 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 83 | nnnn0 | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) | |
| 84 | 83 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 85 | expp1 | ⊢ ( ( 2 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) · 2 ) ) | |
| 86 | 7 84 85 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) · 2 ) ) |
| 87 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) | |
| 88 | 42 83 87 | sylancr | ⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 89 | 88 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
| 90 | 89 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
| 91 | mulcom | ⊢ ( ( ( 2 ↑ 𝑗 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) | |
| 92 | 90 7 91 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) |
| 93 | 86 92 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( 2 · ( 2 ↑ 𝑗 ) ) ) |
| 94 | 93 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ ( 𝑗 + 1 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( 2 · ( 2 ↑ 𝑗 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 95 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℂ ) |
| 96 | fveq2 | ⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 97 | 96 | eleq1d | ⊢ ( 𝑘 = ( 2 ↑ ( 𝑗 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) ) |
| 98 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 99 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) | |
| 100 | 42 81 99 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 101 | 97 98 100 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 102 | 101 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 103 | 95 90 102 | mulassd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 · ( 2 ↑ 𝑗 ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 104 | 82 94 103 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 105 | 89 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ0 ) |
| 106 | hashfz1 | ⊢ ( ( 2 ↑ 𝑗 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) = ( 2 ↑ 𝑗 ) ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) = ( 2 ↑ 𝑗 ) ) |
| 108 | 107 90 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) ∈ ℂ ) |
| 109 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ) | |
| 110 | hashcl | ⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℕ0 ) | |
| 111 | 109 110 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℕ0 ) |
| 112 | 111 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℂ ) |
| 113 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) | |
| 114 | 113 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 115 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 116 | peano2uz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 117 | 2re | ⊢ 2 ∈ ℝ | |
| 118 | 1le2 | ⊢ 1 ≤ 2 | |
| 119 | leexp2a | ⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 120 | 117 118 119 | mp3an12 | ⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 121 | 114 115 116 120 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 122 | 89 65 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 123 | 100 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) |
| 124 | elfz5 | ⊢ ( ( ( 2 ↑ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℤ ) → ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) | |
| 125 | 122 123 124 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ↔ ( 2 ↑ 𝑗 ) ≤ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 126 | 121 125 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 127 | fzsplit | ⊢ ( ( 2 ↑ 𝑗 ) ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) | |
| 128 | 126 127 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 129 | 128 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 130 | 90 | times2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · 2 ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 131 | 86 130 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 132 | 100 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ0 ) |
| 133 | hashfz1 | ⊢ ( ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 134 | 132 133 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 135 | 107 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) = ( ( 2 ↑ 𝑗 ) + ( 2 ↑ 𝑗 ) ) ) |
| 136 | 131 134 135 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) ) |
| 137 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ) | |
| 138 | 89 | nnred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℝ ) |
| 139 | 138 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) < ( ( 2 ↑ 𝑗 ) + 1 ) ) |
| 140 | fzdisj | ⊢ ( ( 2 ↑ 𝑗 ) < ( ( 2 ↑ 𝑗 ) + 1 ) → ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) | |
| 141 | 139 140 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) |
| 142 | hashun | ⊢ ( ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∈ Fin ∧ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ∧ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∩ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ∅ ) → ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) | |
| 143 | 137 109 141 142 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( ( 1 ... ( 2 ↑ 𝑗 ) ) ∪ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 144 | 129 136 143 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( 2 ↑ 𝑗 ) ) = ( ( ♯ ‘ ( 1 ... ( 2 ↑ 𝑗 ) ) ) + ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 145 | 108 90 112 144 | addcanad | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) = ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 146 | 145 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 147 | fsumconst | ⊢ ( ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ∧ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) | |
| 148 | 109 102 147 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ♯ ‘ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 149 | 146 148 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 150 | 101 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 151 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝜑 ) | |
| 152 | peano2nn | ⊢ ( ( 2 ↑ 𝑗 ) ∈ ℕ → ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ) | |
| 153 | 89 152 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ) |
| 154 | elfzuz | ⊢ ( 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) | |
| 155 | eluznn | ⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 156 | 153 154 155 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 157 | 151 156 1 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 158 | elfzuz3 | ⊢ ( 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 159 | 158 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 160 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝜑 ) | |
| 161 | elfzuz | ⊢ ( 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) | |
| 162 | eluznn | ⊢ ( ( ( ( 2 ↑ 𝑗 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( 2 ↑ 𝑗 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) | |
| 163 | 153 161 162 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 164 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 165 | eluznn | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ ) | |
| 166 | 163 164 165 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 167 | 160 166 1 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 168 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝜑 ) | |
| 169 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 170 | 163 169 165 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 171 | 168 170 3 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∧ 𝑘 ∈ ( 𝑛 ... ( ( 2 ↑ ( 𝑗 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 172 | 159 167 171 | monoord2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 173 | 172 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 174 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 175 | 174 | breq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 176 | 175 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 177 | 173 176 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 178 | 109 150 157 177 | fsumle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 179 | 149 178 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 180 | 138 101 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 181 | 109 157 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 182 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 183 | 182 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 2 ∈ ℝ+ ) |
| 184 | 180 181 183 | lemul2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ≤ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ↔ ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 185 | 179 184 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 186 | 104 185 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 187 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 188 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 189 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 190 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 191 | 42 189 190 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 192 | 191 | nnred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 193 | fveq2 | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) | |
| 194 | 193 | eleq1d | ⊢ ( 𝑘 = ( 2 ↑ 𝑛 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) ) |
| 195 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 196 | 194 195 191 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 197 | 192 196 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑛 ) · ( 𝐹 ‘ ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 198 | 4 197 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 199 | 188 198 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 200 | 65 187 199 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 201 | 200 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 202 | 73 | eleq1d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) ∈ ℝ ↔ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ) |
| 203 | 199 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 204 | 203 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 205 | 202 204 80 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 206 | 65 187 1 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 207 | ffvelcdm | ⊢ ( ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ∧ ( 2 ↑ 𝑗 ) ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) | |
| 208 | 206 88 207 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
| 209 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℝ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) | |
| 210 | 117 208 209 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 211 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 212 | 117 181 211 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 213 | le2add | ⊢ ( ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) ∧ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∈ ℝ ∧ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) → ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) | |
| 214 | 201 205 210 212 213 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ∧ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 215 | 186 214 | mpan2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 216 | 113 65 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 217 | seqp1 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 218 | 216 217 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 219 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ∈ Fin ) | |
| 220 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 221 | 1 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 222 | 151 220 221 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 223 | 141 128 219 222 | fsumsplit | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 224 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 225 | 100 65 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 226 | 224 225 222 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 227 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 228 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 229 | 151 228 221 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 230 | 227 122 229 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) |
| 231 | 230 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 1 ... ( 2 ↑ 𝑗 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 232 | 223 226 231 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 233 | 232 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 2 · ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 234 | 208 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
| 235 | 181 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 236 | 95 234 235 | adddid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) + Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 237 | 233 236 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 238 | 218 237 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ↔ ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) + ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) + ( 2 · Σ 𝑘 ∈ ( ( ( 2 ↑ 𝑗 ) + 1 ) ... ( 2 ↑ ( 𝑗 + 1 ) ) ) ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 239 | 215 238 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) |
| 240 | 239 | expcom | ⊢ ( 𝑗 ∈ ℕ → ( 𝜑 → ( ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 241 | 240 | a2d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑗 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑗 ) ) ) ) → ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ ( 𝑗 + 1 ) ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 242 | 14 20 26 32 72 241 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) ) |
| 243 | 242 | impcom | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑁 ) ≤ ( 2 · ( seq 1 ( + , 𝐹 ) ‘ ( 2 ↑ 𝑁 ) ) ) ) |