This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | le2add | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) | |
| 3 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) | |
| 4 | leadd1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 ≤ 𝐶 ↔ ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ) ) |
| 6 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ ) | |
| 7 | leadd2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) | |
| 8 | 3 6 2 7 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 ≤ 𝐷 ↔ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) ) |
| 10 | 1 3 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 11 | 2 3 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 12 | 2 6 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + 𝐷 ) ∈ ℝ ) |
| 13 | letr | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ( 𝐶 + 𝐵 ) ∈ ℝ ∧ ( 𝐶 + 𝐷 ) ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐵 ) ∧ ( 𝐶 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |
| 15 | 9 14 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷 ) → ( 𝐴 + 𝐵 ) ≤ ( 𝐶 + 𝐷 ) ) ) |