This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoord2.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| monoord2.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| monoord2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | monoord2 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord2.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | monoord2.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 3 | monoord2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 4 | 2 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 5 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 7 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 8 | fvoveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 10 | 8 9 | breq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 11 | 10 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 12 | 7 11 | sylib | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 13 | 12 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 14 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) ) |
| 16 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 18 | fzp1elp1 | ⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 20 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 21 | 1 20 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 | 21 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 23 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 24 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 26 | 25 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 28 | 19 27 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 29 | 15 17 28 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 30 | 9 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
| 31 | fzssp1 | ⊢ ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) | |
| 32 | 31 26 | sseqtrid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 33 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 34 | 30 17 33 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 35 | 29 34 | lenegd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ - ( 𝐹 ‘ 𝑛 ) ≤ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 36 | 13 35 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → - ( 𝐹 ‘ 𝑛 ) ≤ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 37 | 9 | negeqd | ⊢ ( 𝑘 = 𝑛 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 38 | eqid | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) | |
| 39 | negex | ⊢ - ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 40 | 37 38 39 | fvmpt | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 41 | 33 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 42 | 14 | negeqd | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 43 | negex | ⊢ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ V | |
| 44 | 42 38 43 | fvmpt | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 45 | 28 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 46 | 36 41 45 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 47 | 1 6 46 | monoord | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) ) |
| 48 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 49 | 1 48 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 50 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 51 | 50 | negeqd | ⊢ ( 𝑘 = 𝑀 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 52 | negex | ⊢ - ( 𝐹 ‘ 𝑀 ) ∈ V | |
| 53 | 51 38 52 | fvmpt | ⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 54 | 49 53 | syl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 55 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 56 | 1 55 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 57 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 58 | 57 | negeqd | ⊢ ( 𝑘 = 𝑁 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 59 | negex | ⊢ - ( 𝐹 ‘ 𝑁 ) ∈ V | |
| 60 | 58 38 59 | fvmpt | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 61 | 56 60 | syl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 62 | 47 54 61 | 3brtr3d | ⊢ ( 𝜑 → - ( 𝐹 ‘ 𝑀 ) ≤ - ( 𝐹 ‘ 𝑁 ) ) |
| 63 | 57 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 64 | 63 16 56 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 65 | 50 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
| 66 | 65 16 49 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 67 | 64 66 | lenegd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ↔ - ( 𝐹 ‘ 𝑀 ) ≤ - ( 𝐹 ‘ 𝑁 ) ) ) |
| 68 | 62 67 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |