This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1domg | |- ( B e. C -> ( F : A -1-1-> B -> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | f1dmex | |- ( ( F : A -1-1-> B /\ B e. C ) -> A e. _V ) |
|
| 3 | fex | |- ( ( F : A --> B /\ A e. _V ) -> F e. _V ) |
|
| 4 | 1 2 3 | syl2an2r | |- ( ( F : A -1-1-> B /\ B e. C ) -> F e. _V ) |
| 5 | 4 | expcom | |- ( B e. C -> ( F : A -1-1-> B -> F e. _V ) ) |
| 6 | f1eq1 | |- ( f = F -> ( f : A -1-1-> B <-> F : A -1-1-> B ) ) |
|
| 7 | 6 | spcegv | |- ( F e. _V -> ( F : A -1-1-> B -> E. f f : A -1-1-> B ) ) |
| 8 | 5 7 | syli | |- ( B e. C -> ( F : A -1-1-> B -> E. f f : A -1-1-> B ) ) |
| 9 | brdomg | |- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
|
| 10 | 8 9 | sylibrd | |- ( B e. C -> ( F : A -1-1-> B -> A ~<_ B ) ) |