This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumneg.1 | |- ( ph -> A e. Fin ) |
|
| fsumneg.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumsub.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
||
| Assertion | fsumsub | |- ( ph -> sum_ k e. A ( B - C ) = ( sum_ k e. A B - sum_ k e. A C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumneg.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumneg.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fsumsub.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
|
| 4 | 3 | negcld | |- ( ( ph /\ k e. A ) -> -u C e. CC ) |
| 5 | 1 2 4 | fsumadd | |- ( ph -> sum_ k e. A ( B + -u C ) = ( sum_ k e. A B + sum_ k e. A -u C ) ) |
| 6 | 1 3 | fsumneg | |- ( ph -> sum_ k e. A -u C = -u sum_ k e. A C ) |
| 7 | 6 | oveq2d | |- ( ph -> ( sum_ k e. A B + sum_ k e. A -u C ) = ( sum_ k e. A B + -u sum_ k e. A C ) ) |
| 8 | 5 7 | eqtrd | |- ( ph -> sum_ k e. A ( B + -u C ) = ( sum_ k e. A B + -u sum_ k e. A C ) ) |
| 9 | 2 3 | negsubd | |- ( ( ph /\ k e. A ) -> ( B + -u C ) = ( B - C ) ) |
| 10 | 9 | sumeq2dv | |- ( ph -> sum_ k e. A ( B + -u C ) = sum_ k e. A ( B - C ) ) |
| 11 | 1 2 | fsumcl | |- ( ph -> sum_ k e. A B e. CC ) |
| 12 | 1 3 | fsumcl | |- ( ph -> sum_ k e. A C e. CC ) |
| 13 | 11 12 | negsubd | |- ( ph -> ( sum_ k e. A B + -u sum_ k e. A C ) = ( sum_ k e. A B - sum_ k e. A C ) ) |
| 14 | 8 10 13 | 3eqtr3d | |- ( ph -> sum_ k e. A ( B - C ) = ( sum_ k e. A B - sum_ k e. A C ) ) |