This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infssuzle | |- ( ( S C_ ( ZZ>= ` M ) /\ A e. S ) -> inf ( S , RR , < ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( A e. S -> S =/= (/) ) |
|
| 2 | uzwo | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E. j e. S A. k e. S j <_ k ) |
|
| 3 | 1 2 | sylan2 | |- ( ( S C_ ( ZZ>= ` M ) /\ A e. S ) -> E. j e. S A. k e. S j <_ k ) |
| 4 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 5 | zssre | |- ZZ C_ RR |
|
| 6 | 4 5 | sstri | |- ( ZZ>= ` M ) C_ RR |
| 7 | sstr | |- ( ( S C_ ( ZZ>= ` M ) /\ ( ZZ>= ` M ) C_ RR ) -> S C_ RR ) |
|
| 8 | 6 7 | mpan2 | |- ( S C_ ( ZZ>= ` M ) -> S C_ RR ) |
| 9 | lbinfle | |- ( ( S C_ RR /\ E. j e. S A. k e. S j <_ k /\ A e. S ) -> inf ( S , RR , < ) <_ A ) |
|
| 10 | 9 | 3com23 | |- ( ( S C_ RR /\ A e. S /\ E. j e. S A. k e. S j <_ k ) -> inf ( S , RR , < ) <_ A ) |
| 11 | 8 10 | syl3an1 | |- ( ( S C_ ( ZZ>= ` M ) /\ A e. S /\ E. j e. S A. k e. S j <_ k ) -> inf ( S , RR , < ) <_ A ) |
| 12 | 3 11 | mpd3an3 | |- ( ( S C_ ( ZZ>= ` M ) /\ A e. S ) -> inf ( S , RR , < ) <_ A ) |