This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the algorithm iterator R at 0 is the initial state A . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
||
| algrf.3 | |- ( ph -> M e. ZZ ) |
||
| algrf.4 | |- ( ph -> A e. S ) |
||
| Assertion | algr0 | |- ( ph -> ( R ` M ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
|
| 3 | algrf.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | algrf.4 | |- ( ph -> A e. S ) |
|
| 5 | 2 | fveq1i | |- ( R ` M ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) |
| 6 | seq1 | |- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
| 8 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 9 | 3 8 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 10 | 9 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 11 | fvconst2g | |- ( ( A e. S /\ M e. Z ) -> ( ( Z X. { A } ) ` M ) = A ) |
|
| 12 | 4 10 11 | syl2anc | |- ( ph -> ( ( Z X. { A } ) ` M ) = A ) |
| 13 | 7 12 | eqtrd | |- ( ph -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = A ) |
| 14 | 5 13 | eqtrid | |- ( ph -> ( R ` M ) = A ) |