This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arch | |- ( A e. RR -> E. n e. NN A < n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( y = A -> ( y < n <-> A < n ) ) |
|
| 2 | 1 | rexbidv | |- ( y = A -> ( E. n e. NN y < n <-> E. n e. NN A < n ) ) |
| 3 | nnunb | |- -. E. y e. RR A. n e. NN ( n < y \/ n = y ) |
|
| 4 | ralnex | |- ( A. y e. RR -. A. n e. NN ( n < y \/ n = y ) <-> -. E. y e. RR A. n e. NN ( n < y \/ n = y ) ) |
|
| 5 | 3 4 | mpbir | |- A. y e. RR -. A. n e. NN ( n < y \/ n = y ) |
| 6 | rexnal | |- ( E. n e. NN -. ( n < y \/ n = y ) <-> -. A. n e. NN ( n < y \/ n = y ) ) |
|
| 7 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 8 | axlttri | |- ( ( y e. RR /\ n e. RR ) -> ( y < n <-> -. ( y = n \/ n < y ) ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( y e. RR /\ n e. NN ) -> ( y < n <-> -. ( y = n \/ n < y ) ) ) |
| 10 | equcom | |- ( y = n <-> n = y ) |
|
| 11 | 10 | orbi1i | |- ( ( y = n \/ n < y ) <-> ( n = y \/ n < y ) ) |
| 12 | orcom | |- ( ( n = y \/ n < y ) <-> ( n < y \/ n = y ) ) |
|
| 13 | 11 12 | bitri | |- ( ( y = n \/ n < y ) <-> ( n < y \/ n = y ) ) |
| 14 | 13 | notbii | |- ( -. ( y = n \/ n < y ) <-> -. ( n < y \/ n = y ) ) |
| 15 | 9 14 | bitrdi | |- ( ( y e. RR /\ n e. NN ) -> ( y < n <-> -. ( n < y \/ n = y ) ) ) |
| 16 | 15 | biimprd | |- ( ( y e. RR /\ n e. NN ) -> ( -. ( n < y \/ n = y ) -> y < n ) ) |
| 17 | 16 | reximdva | |- ( y e. RR -> ( E. n e. NN -. ( n < y \/ n = y ) -> E. n e. NN y < n ) ) |
| 18 | 6 17 | biimtrrid | |- ( y e. RR -> ( -. A. n e. NN ( n < y \/ n = y ) -> E. n e. NN y < n ) ) |
| 19 | 18 | ralimia | |- ( A. y e. RR -. A. n e. NN ( n < y \/ n = y ) -> A. y e. RR E. n e. NN y < n ) |
| 20 | 5 19 | ax-mp | |- A. y e. RR E. n e. NN y < n |
| 21 | 2 20 | vtoclri | |- ( A e. RR -> E. n e. NN A < n ) |