This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fsum1p.3 | |- ( k = M -> A = B ) |
||
| Assertion | fsum1p | |- ( ph -> sum_ k e. ( M ... N ) A = ( B + sum_ k e. ( ( M + 1 ) ... N ) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 3 | fsum1p.3 | |- ( k = M -> A = B ) |
|
| 4 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 5 | 1 4 | syl | |- ( ph -> M e. ZZ ) |
| 6 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( M ... M ) = { M } ) |
| 8 | 7 | ineq1d | |- ( ph -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = ( { M } i^i ( ( M + 1 ) ... N ) ) ) |
| 9 | 5 | zred | |- ( ph -> M e. RR ) |
| 10 | 9 | ltp1d | |- ( ph -> M < ( M + 1 ) ) |
| 11 | fzdisj | |- ( M < ( M + 1 ) -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 13 | 8 12 | eqtr3d | |- ( ph -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 14 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 15 | 1 14 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 16 | fzsplit | |- ( M e. ( M ... N ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 18 | 7 | uneq1d | |- ( ph -> ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 19 | 17 18 | eqtrd | |- ( ph -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 20 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 21 | 13 19 20 2 | fsumsplit | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. { M } A + sum_ k e. ( ( M + 1 ) ... N ) A ) ) |
| 22 | 3 | eleq1d | |- ( k = M -> ( A e. CC <-> B e. CC ) ) |
| 23 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 24 | 22 23 15 | rspcdva | |- ( ph -> B e. CC ) |
| 25 | 3 | sumsn | |- ( ( M e. ZZ /\ B e. CC ) -> sum_ k e. { M } A = B ) |
| 26 | 5 24 25 | syl2anc | |- ( ph -> sum_ k e. { M } A = B ) |
| 27 | 26 | oveq1d | |- ( ph -> ( sum_ k e. { M } A + sum_ k e. ( ( M + 1 ) ... N ) A ) = ( B + sum_ k e. ( ( M + 1 ) ... N ) A ) ) |
| 28 | 21 27 | eqtrd | |- ( ph -> sum_ k e. ( M ... N ) A = ( B + sum_ k e. ( ( M + 1 ) ... N ) A ) ) |