This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| ovolicc.2 | |- ( ph -> B e. RR ) |
||
| ovolicc.3 | |- ( ph -> A <_ B ) |
||
| ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
||
| ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| ovolicc2.8 | |- ( ph -> G : U --> NN ) |
||
| ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
||
| Assertion | ovolicc2lem1 | |- ( ( ph /\ X e. U ) -> ( P e. X <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ovolicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ovolicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 6 | ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
|
| 7 | ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 8 | ovolicc2.8 | |- ( ph -> G : U --> NN ) |
|
| 9 | ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
|
| 10 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 11 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
|
| 12 | 5 10 11 | sylancl | |- ( ph -> F : NN --> ( RR X. RR ) ) |
| 13 | 8 | ffvelcdmda | |- ( ( ph /\ X e. U ) -> ( G ` X ) e. NN ) |
| 14 | fvco3 | |- ( ( F : NN --> ( RR X. RR ) /\ ( G ` X ) e. NN ) -> ( ( (,) o. F ) ` ( G ` X ) ) = ( (,) ` ( F ` ( G ` X ) ) ) ) |
|
| 15 | 12 13 14 | syl2an2r | |- ( ( ph /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = ( (,) ` ( F ` ( G ` X ) ) ) ) |
| 16 | 9 | ralrimiva | |- ( ph -> A. t e. U ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
| 17 | 2fveq3 | |- ( t = X -> ( ( (,) o. F ) ` ( G ` t ) ) = ( ( (,) o. F ) ` ( G ` X ) ) ) |
|
| 18 | id | |- ( t = X -> t = X ) |
|
| 19 | 17 18 | eqeq12d | |- ( t = X -> ( ( ( (,) o. F ) ` ( G ` t ) ) = t <-> ( ( (,) o. F ) ` ( G ` X ) ) = X ) ) |
| 20 | 19 | rspccva | |- ( ( A. t e. U ( ( (,) o. F ) ` ( G ` t ) ) = t /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = X ) |
| 21 | 16 20 | sylan | |- ( ( ph /\ X e. U ) -> ( ( (,) o. F ) ` ( G ` X ) ) = X ) |
| 22 | 12 | adantr | |- ( ( ph /\ X e. U ) -> F : NN --> ( RR X. RR ) ) |
| 23 | 22 13 | ffvelcdmd | |- ( ( ph /\ X e. U ) -> ( F ` ( G ` X ) ) e. ( RR X. RR ) ) |
| 24 | 1st2nd2 | |- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( F ` ( G ` X ) ) = <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
|
| 25 | 23 24 | syl | |- ( ( ph /\ X e. U ) -> ( F ` ( G ` X ) ) = <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
| 26 | 25 | fveq2d | |- ( ( ph /\ X e. U ) -> ( (,) ` ( F ` ( G ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) ) |
| 27 | df-ov | |- ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` X ) ) ) , ( 2nd ` ( F ` ( G ` X ) ) ) >. ) |
|
| 28 | 26 27 | eqtr4di | |- ( ( ph /\ X e. U ) -> ( (,) ` ( F ` ( G ` X ) ) ) = ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) |
| 29 | 15 21 28 | 3eqtr3d | |- ( ( ph /\ X e. U ) -> X = ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) |
| 30 | 29 | eleq2d | |- ( ( ph /\ X e. U ) -> ( P e. X <-> P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
| 31 | xp1st | |- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR ) |
|
| 32 | 23 31 | syl | |- ( ( ph /\ X e. U ) -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR ) |
| 33 | xp2nd | |- ( ( F ` ( G ` X ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) |
|
| 34 | 23 33 | syl | |- ( ( ph /\ X e. U ) -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) |
| 35 | rexr | |- ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR -> ( 1st ` ( F ` ( G ` X ) ) ) e. RR* ) |
|
| 36 | rexr | |- ( ( 2nd ` ( F ` ( G ` X ) ) ) e. RR -> ( 2nd ` ( F ` ( G ` X ) ) ) e. RR* ) |
|
| 37 | elioo2 | |- ( ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR* /\ ( 2nd ` ( F ` ( G ` X ) ) ) e. RR* ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( ( 1st ` ( F ` ( G ` X ) ) ) e. RR /\ ( 2nd ` ( F ` ( G ` X ) ) ) e. RR ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
| 39 | 32 34 38 | syl2anc | |- ( ( ph /\ X e. U ) -> ( P e. ( ( 1st ` ( F ` ( G ` X ) ) ) (,) ( 2nd ` ( F ` ( G ` X ) ) ) ) <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |
| 40 | 30 39 | bitrd | |- ( ( ph /\ X e. U ) -> ( P e. X <-> ( P e. RR /\ ( 1st ` ( F ` ( G ` X ) ) ) < P /\ P < ( 2nd ` ( F ` ( G ` X ) ) ) ) ) ) |