This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fsumm1.3 | |- ( k = N -> A = B ) |
||
| Assertion | fsumm1 | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fsumm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 3 | fsumm1.3 | |- ( k = N -> A = B ) |
|
| 4 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 5 | 1 4 | syl | |- ( ph -> N e. ZZ ) |
| 6 | fzsn | |- ( N e. ZZ -> ( N ... N ) = { N } ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( N ... N ) = { N } ) |
| 8 | 7 | ineq2d | |- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = ( ( M ... ( N - 1 ) ) i^i { N } ) ) |
| 9 | 5 | zred | |- ( ph -> N e. RR ) |
| 10 | 9 | ltm1d | |- ( ph -> ( N - 1 ) < N ) |
| 11 | fzdisj | |- ( ( N - 1 ) < N -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
| 13 | 8 12 | eqtr3d | |- ( ph -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
| 14 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 15 | 1 14 | syl | |- ( ph -> M e. ZZ ) |
| 16 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( M - 1 ) e. ZZ ) |
| 18 | 15 | zcnd | |- ( ph -> M e. CC ) |
| 19 | ax-1cn | |- 1 e. CC |
|
| 20 | npcan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M - 1 ) + 1 ) = M ) |
|
| 21 | 18 19 20 | sylancl | |- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 22 | 21 | fveq2d | |- ( ph -> ( ZZ>= ` ( ( M - 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
| 23 | 1 22 | eleqtrrd | |- ( ph -> N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) |
| 24 | eluzp1m1 | |- ( ( ( M - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 26 | fzsuc2 | |- ( ( M e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
|
| 27 | 15 25 26 | syl2anc | |- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
| 28 | 5 | zcnd | |- ( ph -> N e. CC ) |
| 29 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 30 | 28 19 29 | sylancl | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 31 | 30 | oveq2d | |- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 32 | 27 31 | eqtr3d | |- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( M ... N ) ) |
| 33 | 30 | sneqd | |- ( ph -> { ( ( N - 1 ) + 1 ) } = { N } ) |
| 34 | 33 | uneq2d | |- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 35 | 32 34 | eqtr3d | |- ( ph -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 36 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 37 | 13 35 36 2 | fsumsplit | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) ) |
| 38 | 3 | eleq1d | |- ( k = N -> ( A e. CC <-> B e. CC ) ) |
| 39 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 40 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 41 | 1 40 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 42 | 38 39 41 | rspcdva | |- ( ph -> B e. CC ) |
| 43 | 3 | sumsn | |- ( ( N e. ( ZZ>= ` M ) /\ B e. CC ) -> sum_ k e. { N } A = B ) |
| 44 | 1 42 43 | syl2anc | |- ( ph -> sum_ k e. { N } A = B ) |
| 45 | 44 | oveq2d | |- ( ph -> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
| 46 | 37 45 | eqtrd | |- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |